Hanoi Mathematical Society Hanoi Open Mathematics Competition 2013

Junior Section

Sunday, March 24, 2013

14h00-17h00

Multiple Choice Questions

Question 1. Write 2013 as a sum of m prime numbers. The smallest value of m is: (A): 2; (B): 3; (C): 4; (D): 1; (E): None of the above.

Answer: (A).

Since $2013 = 3 \times 671$ then 2013 is not a prime number. Hence $m \ge 2$. On the other hand, 2013 = 2 + 2011 as a sum of 2 prime numbers. Thus, the smallest value of m is 2.

Question 2. How many natural numbers n are there so that $n^2 + 2014$ is a perfect square. (A): 1; (B): 2; (C): 3; (D): 4; (E) None of the above.

Answer: (E).

Suppose that $n^2 + 2014$ is a perfect square, i.e. $n^2 + 2014 = m^2$, where $m \in \mathbb{N}^*$. It follows (m-n)(m+n) = 2014 and then at least one of m-n and m+n is even. Since (m-n)+(m+n) = 2m is even then both m+n and m-n are even. Hence $(m-n) \times (m+n)$ is devisible by 4. It is imposible for 2014 is not divisible by 4. Thus, there are no natural numbers n so that $n^2 + 2014$ is a perfect square.

Question 3. The largest integer not exceeding $[(n+1)\alpha] - [n\alpha]$, where *n* is a natural number, $\alpha = \frac{\sqrt{2013}}{\sqrt{2014}}$, is: (A): 1; (B): 2; (C): 3; (D): 4; (E) None of the above.

Answer: (E).

Let $a_n = [(n+1)\alpha] - [n\alpha]$, for n = 0, 1, 2, ... From the inequalities $0 \le a_n \le [n\alpha+1] - [n\alpha] = 1$ for every natural number n and a_n is an integer, it follows $a_n = [(n+1)\alpha] - [n\alpha] \in \{0, 1\}$ for every $n \in \mathbb{N}$. We prove that 0 is the largest integer not exceeding every $[(n+1)\alpha] - [n\alpha]$. Indeed, for n = 0, we find $a_0 = [\alpha] = 0$. Hence, the largest integer not exceeding $[(n+1)\alpha] - [n\alpha]$, where n is a natural number and $\alpha = \frac{\sqrt{2013}}{\sqrt{2014}}$ must be 0.

Question 4. Let A be an even number but not divisible by 10. The last two digits of A^{20} are:

(A): 46; (B): 56; (C): 66; (D): 76; (E): None of the above.

Answer: (D).

Since A is even then $A = 2n, n \in \mathbb{N}$. It follows $A^{20} = (2n)^{20} = (4n^2)^{10} \Rightarrow A^{20} \vdots 4$.

On the other hand, A is not divisible by 10,

$$\begin{array}{c} A = 5k \pm 1 \\ A = 5k \pm 2 \end{array}$$

If $A = 5k \pm 1$ then $A^{20} = (5k \pm 1)^{20} = (5k)^{20} + 20.(5k)^{19} + 20.(5k)^{18} + \dots + 20.5k + 1$, hence $A^{20} \equiv 1 \pmod{25}$.

If $A = 5k \pm 2$, then $A^{20} = 25q + 2^{20} = 25q + (1025 - 1)^2$, hence $A^{20} \equiv 1 \pmod{25}$.

Thus, $A^{20} \equiv 1 \pmod{25}$ for every A and the last two digits of A^{20} are in $\{01; 26; 51; 76\}$. Since A^{20} is divisible by 4 then the last two digits of A^{20} are 76.

Question 5. The number of integer solutions x of the equation below

(12x - 1)(6x - 1)(4x - 1)(3x - 1) = 330.

is: (A): 0; (B): 1; (C): 2; (D): 3; (E): None of the above.

Answer: (B).

Multiply both sides of the equation by 2.3.4, we find

$$(12x - 1)(12x - 2)(12x - 3)(12x - 4) = 11 \times 10 \times 9 \times 8.$$

Left side is the product of 4 non-zero consecutive integers then all factors are the same sign. This argument follows that

$$\begin{bmatrix} (12x-1)(12x-2)(12x-3)(12x-4) = 11 \times 10 \times 9 \times 8\\ (12x-1)(12x-2)(12x-3)(12x-4) = (-11) \times (-10) \times (-9) \times (-8) \end{bmatrix}$$

The 1st equation has a root x = 1, the 2nd equation has no integer roots.

Question 6. Let ABC be a triangle with area 1 (cm²). Points D, E and F lie on the sides AB, BC and CA, respectively. Prove that

min{Area of ΔADF , Area of ΔBED , Area of ΔCEF } $\leq \frac{1}{4}$ (cm²).

Answer.

From the equalities

$$\frac{S_{ADF}}{S_{ABC}} = \frac{AD \times AF}{AB \times AC}, \quad \frac{S_{BED}}{S_{ABC}} = \frac{BD \times BF}{AB \times AC}, \quad \frac{S_{CEF}}{S_{ABC}} = \frac{CE \times CF}{AB \times AC},$$

we find

$$\frac{S_{ADF}S_{BED}S_{CEF}}{(S_{ABC})^3} = \frac{(AD \times BD)(BE \times EC)(AF \times FC)}{AB^2 \times AC^2 \times BC^2}$$
$$\leq \frac{AD + DB}{2} \frac{BE + EC}{2} \frac{AF + FC}{2}}{AB^2 \times AC^2 \times BC^2} = \frac{1}{64}.$$

Hence,

$$S_{ADF}S_{BED}S_{CEF} \le \frac{1}{64} = \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}$$

It follows that

min{Area of
$$\Delta ADF$$
, Area of ΔBED , Area of ΔCEF } $\leq \frac{1}{4}$ (cm²).

Question 7. Let *ABC* be a triangle with $\widehat{A} = 90^{\circ}$, $\widehat{B} = 60^{\circ}$ and *BC* = 1cm. Draw outside of ΔABC three equilateral triangles *ABD*, *ACE* and *BCF*. Determine the area of ΔDEF .

Answer.

From the assumption, we get
$$AB = \frac{1}{2}$$
, $AC = \frac{\sqrt{3}}{2}$ and $\widehat{DBE} = 180^{\circ}$.

It is easy to check that

$$S_{ABD} = \frac{1}{2}S_{ABC} = \frac{\sqrt{3}}{16}, \ S_{BCF} = 2S_{ABC} = \frac{\sqrt{3}}{16}$$

Hence, $S_{DEF} = \frac{\sqrt{3}}{16} + \frac{\sqrt{3}}{8} + \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{16} = \frac{9\sqrt{3}}{16} \text{cm}^2$.

Question 8. Let ABCDE be a convex pentagon. Given that

$$S_{\Delta ABC} = S_{\Delta BCD} = S_{\Delta CDE} = S_{\Delta DEA} = S_{\Delta EAB} = 2\text{cm}^2,$$

Find the area of the pentagon.

Answer.

From the assumption

$$S_{\Delta ABC} = S_{\Delta BCD} = S_{\Delta CDE} = S_{\Delta DEA} = S_{\Delta EAB} = 2\text{cm}^2,$$

we find $AB \parallel EC$, $BC \parallel AD$, $AC \parallel DE$, $AE \parallel BD$.

Let O be the common point of BD and CE. Denote $S_{BCO} = x$. Since ABOE is a parallelogram, then $S_{ABE} = S_{BOE} = 2$ and

$$S_{ABCDE} = S_{ABE} + S_{BOE} + S_{CDE} + S_{BOC} = 6 + x.$$

From

$$\frac{S_{BOC}}{S_{DOC}} = \frac{BO}{OD} = \frac{S_{BOE}}{S_{DOE}}$$

it follows $\frac{x}{2-x} = \frac{2}{x}$ since $S_{BOC} = S_{DOE}$, i.e. $x^2 + 2x + 1 = 5$ and then $x = \sqrt{5} - 1$. Hence

 $S_{ABCDE} = S_{ABE} + S_{BOE} + S_{CDE} + S_{BOC} = 6 + x = 6 + \sqrt{5} - 1 = 5 + \sqrt{5} \text{cm}^2.$

Question 9. Solve the following system in positive numbers

$$\begin{cases} x+y \le 1\\ \frac{2}{xy} + \frac{1}{x^2+y^2} = 10. \end{cases}$$

Answer.

For every root (x, y) of the system, we find

$$10 = \frac{2}{xy} + \frac{1}{x^2 + y^2} = \left(\frac{1}{2xy} + \frac{1}{x^2 + y^2}\right) + \frac{6}{4xy} \ge \frac{4}{(x+y)^2} + \frac{6}{(x+y)^2} \ge 4 + 6 = 10$$

Hence, the system is equivalent to

$$\begin{cases} x+y=1\\ x=y \end{cases} \quad \Leftrightarrow (x,y) = \left(\frac{1}{2},\frac{1}{2}\right).$$

Question 10. Consider the set of all rectangles with a given perimeter p. Find the largest value of

$$M = \frac{S}{2S + p + 2},$$

where S is denoted the area of the rectangle.

Answer.

Let a, b be the lengths of sides of the rectangle, then 2(a + b) = p, ab = S. By the Cauchy inequality, $p = 2(a + b) \ge 2 \times 2\sqrt{ab} = 4\sqrt{S}$. It follows $S \le \frac{p^2}{16}$. Note that 0 < M < 1, then

$$M = \frac{S}{2S + p + 2} \le \frac{\frac{p^2}{16}}{\frac{p^2}{16} + p + 2} = \frac{p^2}{p^2 + 16p + 32}.$$

The equality holds for a = b, i.e. ABCD is a square.

Question 11. The positive numbers a, b, c, d, e are such that the following identity hold for all real number x.

$$(x+a)(x+b)(x+c) = x^3 + 3dx^2 + 3x + e^3.$$

Find the smallest value of d.

Answer.

From the identity

$$(x+a)(x+b)(x+c) = x^3 + 3dx^2 + 3x + e^3$$

we find

$$\begin{cases} d = \frac{a+b+c}{3}\\ ab+bc+ca = 3 \end{cases}$$

Hence, by Cauchy inequality $(a+b+c)^2 \ge 3(ab+bc+ca)$, we get $d = \frac{a+b+c}{3} \ge \sqrt{\frac{ab+bc+ca}{3}} = 1$. 1. The equality holds for a = b = c = 1.

Question 12. If $f(x) = ax^2 + bx + c$ satisfies the condition

$$|f(x)| < 1, \quad \forall x \in [-1, 1],$$

prove that the equation $f(x) = 2x^2 - 1$ has two real roots.

Answer.

Rewrite the equation $f(x) = 2x^2 - 1$ in the form

$$g(x) := (2-a)x^2 - bx - 1 - c = 0.$$
 (1)

By the assumption,

$$\begin{cases} f(-1) = a - b + c \\ f(1) = a + b + c \\ f(0) = c \end{cases} \Leftrightarrow \begin{cases} a = \frac{1}{2}[f(1) + f(-1)] - f(0) \\ b = \frac{1}{2}[f(1) - f(-1)] \\ c = f(0) \end{cases}$$

Hence, |a| < 2 and |c| < 1. These follow the equation (1) is a quadratic equation with 2-a > 0 and -1-c < 0 then its discriminant $\Delta = b^2 - 4(2-a)(-1-c) > 0$, i.e. the equation (1) has real roots.

Question 13. Solve the system of equations

$$\begin{cases} \frac{1}{x} + \frac{1}{y} = \frac{1}{6} \\ \frac{3}{x} + \frac{2}{y} = \frac{5}{6} \end{cases}$$

Answer.

It is easy to check that

$$\begin{cases} \frac{1}{x} + \frac{1}{y} = \frac{1}{6} \\ \frac{3}{x} + \frac{2}{y} = \frac{5}{6} \end{cases} \Leftrightarrow \begin{cases} \frac{3}{x} + \frac{3}{y} = \frac{3}{6} \\ \frac{3}{x} + \frac{2}{y} = \frac{5}{6} \end{cases} \Leftrightarrow \begin{cases} \frac{1}{y} = -\frac{1}{3} \\ \frac{1}{x} = \frac{1}{2} \end{cases} \Leftrightarrow (x, y) = (2, -3) \end{cases}$$

Question 14. Solve the system of equations

$$\begin{cases} x^3 + y &= x^2 + 1\\ 2y^3 + z &= 2y^2 + 1\\ 3z^3 + x &= 3z^2 + 1 \end{cases}$$

Answer.

Rewrite the system in the form

$$\begin{cases} x^2(x-1) &= 1-y\\ 2y^2(y-1) &= 1-z\\ 3z^2(z-1) &= 1-x \end{cases}$$

It follows that

$$(x-1)(y-1)(z-1)(6x^2y^2z^2+1) = 0.$$
(1)

Since $6x^2y^2z^2 + 1 > 0$ for all x, y, z then (1) $\Leftrightarrow x = 1$ or y = 1 or z = 1. For all cases, we always obtain the unique solution (x, y, z) = (1, 1, 1).

Question 15. Denote by \mathbb{Q} and \mathbb{N}^* the set of all rational and positive integer numbers, respectively. Suppose that $\frac{ax+b}{x} \in \mathbb{Q}$ for every $x \in \mathbb{N}^*$. Prove that there exist integers A, B, C such that

$$\frac{ax+b}{x} = \frac{Ax+B}{Cx} \text{ for all } x \in \mathbb{N}^*.$$

Answer.

Putting x = 1, x = 2 in $\frac{ax+b}{x}$ we get $a+b=p, \frac{2a+b}{2}=q$, where $p, q \in \mathbb{Q}$. So $a = 2q-p \in \mathbb{Q}$ and $b = 2p - 2q \in \mathbb{Q}$. Write $a = \frac{M}{N}, b = \frac{P}{Q}$, where M, N, P, Q are integers. Hence

$$\frac{ax+b}{x} = \frac{\frac{M}{N}x + \frac{P}{Q}}{x} = \frac{(MQ)x + (PN)}{(NQ)x}$$

which was to be proved.