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Multiple Choice Questions

Question 1. Write 2013 as a sum of m prime numbers. The smallest value of m is:

(A): 2; (B): 3; (C): 4; (D): 1; (E): None of the above.

Answer: (A).

Since 2013 = 3 × 671 then 2013 is not a prime number. Hence m ≥ 2. On the other

hand, 2013 = 2 + 2011 as a sum of 2 prime numbers. Thus, the smallest value of m is 2.

Question 2. How many natural numbers n are there so that n2 + 2014 is a perfect square.

(A): 1; (B): 2; (C): 3; (D): 4; (E) None of the above.

Answer: (E).

Suppose that n2 + 2014 is a perfect square, i.e. n2 + 2014 = m2, where m ∈ N∗. It follows

(m−n)(m+n) = 2014 and then at least one ofm−n andm+n is even. Since (m−n)+(m+n) =

2m is even then both m+ n and m− n are even. Hence (m− n)× (m+ n) is devisible by 4.

It is imposible for 2014 is not divisible by 4. Thus, there are no natural numbers n so that

n2 + 2014 is a perfect square.

Question 3. The largest integer not exceeding [(n+1)α]−[nα], where n is a natural number,

α =

√
2013√
2014

, is:

(A): 1; (B): 2; (C): 3; (D): 4; (E) None of the above.

Answer: (E).

Let an = [(n+1)α]−[nα], for n = 0, 1, 2, . . . From the inequalities 0 ≤ an ≤ [nα+1]−[nα] = 1 for

every natural number n and an is an integer, it follows an = [(n+1)α]− [nα] ∈ {0, 1} for every
n ∈ N. We prove that 0 is the largest integer not exceeding every [(n+ 1)α]− [nα]. Indeed,



for n = 0, we find a0 = [α] = 0. Hence, the largest integer not exceeding [(n + 1)α] − [nα],

where n is a natural number and α =

√
2013√
2014

must be 0.

Question 4. Let A be an even number but not divisible by 10. The last two digits of A20

are:

(A): 46; (B): 56; (C): 66; (D): 76; (E): None of the above.

Answer: (D).

Since A is even then A = 2n, n ∈ N. It follows A20 = (2n)20 =
(
4n2
)10 ⇒ A20 ... 4.

On the other hand, A is not divisible by 10,[
A = 5k ± 1
A = 5k ± 2

If A = 5k ± 1 then A20 = (5k ± 1)20 = (5k)20 + 20. (5k)19 + 20. (5k)18 + .... +

20. 5k + 1, hence A20 ≡ 1 (mod 25) .

If A = 5k ± 2, then A20 = 25q + 220 = 25q + (1025 − 1)2, hence A20 ≡ 1 (mod 25) .

Thus, A20 ≡ 1 (mod 25) for every A and the last two digits of A20 are in {01; 26; 51; 76}.
Since A20 is divisible by 4 then the last two digits of A20 are 76.

Question 5. The number of integer solutions x of the equation below

(12x− 1)(6x− 1)(4x− 1)(3x− 1) = 330.

is: (A): 0; (B): 1; (C): 2; (D): 3; (E): None of the above.

Answer: (B).

Multiply both sides of the equation by 2.3.4, we find

(12x− 1)(12x− 2)(12x− 3)(12x− 4) = 11× 10× 9× 8.

Left side is the product of 4 non-zero consecutive integers then all factors are the same

sign. This argument follows that[
(12x− 1)(12x− 2)(12x− 3)(12x− 4) = 11× 10× 9× 8

(12x− 1)(12x− 2)(12x− 3)(12x− 4) = (−11)× (−10)× (−9)× (−8)

The 1st equation has a root x = 1, the 2nd equation has no integer roots.

Question 6. Let ABC be a triangle with area 1 (cm2). Points D,E and F lie on the sides

AB, BC and CA, respectively. Prove that

min{Area of ∆ADF,Area of ∆BED,Area of ∆CEF} ≤ 1

4
(cm2).
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Answer.

From the equalities

SADF

SABC
=
AD × AF
AB × AC

,
SBED

SABC
=
BD ×BF
AB × AC

,
SCEF

SABC
=
CE × CF
AB × AC

,

we find
SADFSBEDSCEF

(SABC)3
=

(AD ×BD)(BE × EC)(AF × FC)

AB2 × AC2 ×BC2

≤

AD +DB

2

BE + EC

2

AF + FC

2
AB2 × AC2 ×BC2

=
1

64
·

Hence,

SADFSBEDSCEF ≤
1

64
=

1

4
× 1

4
× 1

4
.

It follows that

min{Area of ∆ADF,Area of ∆BED,Area of ∆CEF} ≤ 1

4
(cm2).

Question 7. Let ABC be a triangle with Â = 900, B̂ = 600 and BC = 1cm. Draw outside

of ∆ABC three equilateral triangles ABD,ACE and BCF. Determine the area of ∆DEF.

Answer.

From the assumption, we get AB =
1

2
, AC =

√
3

2
and D̂BE = 1800.

It is easy to check that

SABD =
1

2
SABC =

√
3

16
, SBCF = 2SABC =

√
3

16
.

Hence, SDEF =

√
3

16
+

√
3

8
+

√
3

4
+

√
3

16
=

9
√

3

16
cm2·

Question 8. Let ABCDE be a convex pentagon. Given that

S∆ABC = S∆BCD = S∆CDE = S∆DEA = S∆EAB = 2cm2,

Find the area of the pentagon.

Answer.

From the assumption

S∆ABC = S∆BCD = S∆CDE = S∆DEA = S∆EAB = 2cm2,

we find AB ‖ EC, BC ‖ AD, AC ‖ DE, AE ‖ BD.
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Let O be the common point of BD and CE. Denote SBCO = x. Since ABOE is a

parallelogram, then SABE = SBOE = 2 and

SABCDE = SABE + SBOE + SCDE + SBOC = 6 + x.

From
SBOC

SDOC
=
BO

OD
=
SBOE

SDOE

it follows x
2−x = 2

x since SBOC = SDOE , i.e. x2 + 2x+ 1 = 5 and then x =
√

5− 1. Hence

SABCDE = SABE + SBOE + SCDE + SBOC = 6 + x = 6 +
√

5− 1 = 5 +
√

5cm2.

Question 9. Solve the following system in positive numbers{
x+ y ≤ 1
2

xy
+

1

x2 + y2
= 10.

Answer.

For every root (x, y) of the system, we find

10 =
2

xy
+

1

x2 + y2
=
(

1

2xy
+

1

x2 + y2

)
+

6

4xy
≥ 4

(x+ y)2
+

6

(x+ y)2
≥ 4 + 6 = 10.

Hence, the system is equivalent to{
x+ y = 1

x = y
⇔ (x, y) =

(
1

2
,
1

2

)
.

Question 10. Consider the set of all rectangles with a given perimeter p. Find the largest

value of

M =
S

2S + p+ 2
,

where S is denoted the area of the rectangle.

Answer.

Let a, b be the lengths of sides of the rectangle, then 2(a + b) = p, ab = S. By the Cauchy

inequality, p = 2(a+ b) ≥ 2× 2
√
ab = 4

√
S. It follows S ≤ p2

16
. Note that 0 < M < 1, then

M =
S

2S + p+ 2
≤

p2

16
p2

16 + p+ 2
=

p2

p2 + 16p+ 32
.

The equality holds for a = b, i.e. ABCD is a square.
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Question 11. The positive numbers a, b, c, d, e are such that the following identity hold for

all real number x.

(x+ a)(x+ b)(x+ c) = x3 + 3dx2 + 3x+ e3.

Find the smallest value of d.

Answer.

From the identity

(x+ a)(x+ b)(x+ c) = x3 + 3dx2 + 3x+ e3

we find {
d =

a+ b+ c

3
ab+ bc+ ca = 3

Hence, by Cauchy inequality (a+b+c)2 ≥ 3(ab+bc+ca), we get d =
a+ b+ c

3
≥
√
ab+ bc+ ca

3
=

1. The equality holds for a = b = c = 1.

Question 12. If f(x) = ax2 + bx+ c safisfies the condition

|f(x)| < 1, ∀x ∈ [−1, 1],

prove that the equation f(x) = 2x2 − 1 has two real roots.

Answer.

Rewrite the equation f(x) = 2x2 − 1 in the form

g(x) := (2− a)x2 − bx− 1− c = 0. (1)

By the assumption,f(−1) = a− b+ c

f(1) = a+ b+ c

f(0) = c

⇔


a =

1

2
[f(1) + f(−1)]− f(0)

b =
1

2
[f(1)− f(−1)]

c = f(0)

Hence, |a| < 2 and |c| < 1. These follow the equation (1) is a quadratic equation with

2−a > 0 and −1− c < 0 then its discriminant ∆ = b2− 4(2−a)(−1− c) > 0, i.e. the equation

(1) has real roots.

Question 13. Solve the system of equations
1

x
+

1

y
=

1

6
3

x
+

2

y
=

5

6
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Answer.

It is easy to check that
1

x
+

1

y
=

1

6
3

x
+

2

y
=

5

6

⇔


3

x
+

3

y
=

3

6
3

x
+

2

y
=

5

6

⇔


1

y
= −1

3
1

x
=

1

2

⇔ (x, y) = (2,−3).

Question 14. Solve the system of equationsx
3 + y = x2 + 1

2y3 + z = 2y2 + 1

3z3 + x = 3z2 + 1

Answer.

Rewrite the system in the form x
2(x− 1) = 1− y

2y2(y − 1) = 1− z
3z2(z − 1) = 1− x

It follows that

(x− 1)(y − 1)(z − 1)(6x2y2z2 + 1) = 0. (1)

Since 6x2y2z2 + 1 > 0 for all x, y, z then (1) ⇔ x = 1 or y = 1 or z = 1. For all cases, we

always obtain the unique solution (x, y, z) = (1, 1, 1).

Question 15. Denote by Q and N∗ the set of all rational and positive integer numbers,

respectively. Suppose that
ax+ b

x
∈ Q for every x ∈ N∗. Prove that there exist integers

A,B,C such that
ax+ b

x
=
Ax+B

Cx
for all x ∈ N∗.

Answer.

Putting x = 1, x = 2 in
ax+ b

x
we get a+ b = p,

2a+ b

2
= q, where p, q ∈ Q. So a = 2q− p ∈ Q

and b = 2p− 2q ∈ Q. Write a =
M

N
, b =

P

Q
, where M,N,P,Q are integers. Hence

ax+ b

x
=

M
N x+ P

Q

x
=

(MQ)x+ (PN)

(NQ)x
,

which was to be proved.

————————————
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