Hanoi Mathematical Society
 Hanoi Open Mathematics Competition 2013

Junior Section

Sunday, March 24, 2013
14h00-17h00

Multiple Choice Questions

Question 1. Write 2013 as a sum of m prime numbers. The smallest value of m is:
(A): 2;
(B): 3;
(C): 4;
(D): 1;
(E): None of the above.

Answer: (A).
Since $2013=3 \times 671$ then 2013 is not a prime number. Hence $m \geq 2$. On the other hand, $2013=2+2011$ as a sum of 2 prime numbers. Thus, the smallest value of m is 2 .

Question 2. How many natural numbers n are there so that $n^{2}+2014$ is a perfect square.
(A): 1 ;
(B): 2;
(C): 3 ;
(D): 4;
(E) None of the above.

Answer: (E).

Suppose that $n^{2}+2014$ is a perfect square, i.e. $n^{2}+2014=m^{2}$, where $m \in \mathbb{N}^{*}$. It follows $(m-n)(m+n)=2014$ and then at least one of $m-n$ and $m+n$ is even. Since $(m-n)+(m+n)=$ $2 m$ is even then both $m+n$ and $m-n$ are even. Hence $(m-n) \times(m+n)$ is devisible by 4 . It is imposible for 2014 is not divisible by 4 . Thus, there are no natural numbers n so that $n^{2}+2014$ is a perfect square.

Question 3. The largest integer not exceeding $[(n+1) \alpha]-[n \alpha]$, where n is a natural number, $\alpha=\frac{\sqrt{2013}}{\sqrt{2014}}$, is:
(A): $1 ; \quad$ (B): $2 ; \quad$ (C): $3 ; \quad$ (D): $4 ; \quad$ (E) None of the above.

Answer: (E).
Let $a_{n}=[(n+1) \alpha]-[n \alpha]$, for $n=0,1,2, \ldots$ From the inequalities $0 \leq a_{n} \leq[n \alpha+1]-[n \alpha]=1$ for every natural number n and a_{n} is an integer, it follows $a_{n}=[(n+1) \alpha]-[n \alpha] \in\{0,1\}$ for every $n \in \mathbb{N}$. We prove that 0 is the largest integer not exceeding every $[(n+1) \alpha]-[n \alpha]$. Indeed,
for $n=0$, we find $a_{0}=[\alpha]=0$. Hence, the largest integer not exceeding $[(n+1) \alpha]-[n \alpha]$, where n is a natural number and $\alpha=\frac{\sqrt{2013}}{\sqrt{2014}}$ must be 0 .
Question 4. Let A be an even number but not divisible by 10. The last two digits of A^{20} are:
(A): 46;
(B): 56;
(C): 66;
(D): 76;
(E): None of the above.

Answer: (D).
Since A is even then $A=2 n, n \in \mathbb{N}$. It follows $A^{20}=(2 n)^{20}=\left(4 n^{2}\right)^{10} \Rightarrow A^{20} \vdots 4$.
On the other hand, A is not divisible by 10,

$$
\begin{aligned}
& {\left[\begin{array}{l}
A=5 k \pm 1 \\
A=5 k \pm 2
\end{array}\right.} \\
\text { If } A=5 k \pm 1 \text { then } A^{20}= & (5 k \pm 1)^{20}=(5 k)^{20}+20 .(5 k)^{19}+20 .(5 k)^{18}+\ldots .+
\end{aligned}
$$ $20.5 k+1$, hence $A^{20} \equiv 1(\bmod 25)$.

If $A=5 k \pm 2$, then $A^{20}=25 q+2^{20}=25 q+(1025-1)^{2}$, hence $A^{20} \equiv 1(\bmod 25)$.
Thus, $A^{20} \equiv 1(\bmod 25)$ for every A and the last two digits of A^{20} are in $\{01 ; 26 ; 51 ; 76\}$. Since A^{20} is divisible by 4 then the last two digits of A^{20} are 76 .

Question 5. The number of integer solutions x of the equation below

$$
(12 x-1)(6 x-1)(4 x-1)(3 x-1)=330
$$

is: $(\mathrm{A}): 0 ; \quad(\mathrm{B}): 1 ; \quad(\mathrm{C}): 2 ; \quad(\mathrm{D}): 3 ; \quad(\mathrm{E})$: None of the above.

Answer: (B).

Multiply both sides of the equation by 2.3.4, we find

$$
(12 x-1)(12 x-2)(12 x-3)(12 x-4)=11 \times 10 \times 9 \times 8
$$

Left side is the product of 4 non-zero consecutive integers then all factors are the same sign. This argument follows that

$$
\left[\begin{array}{c}
(12 x-1)(12 x-2)(12 x-3)(12 x-4)=11 \times 10 \times 9 \times 8 \\
(12 x-1)(12 x-2)(12 x-3)(12 x-4)=(-11) \times(-10) \times(-9) \times(-8)
\end{array}\right.
$$

The 1 st equation has a root $x=1$, the 2 nd equation has no integer roots.
Question 6. Let $A B C$ be a triangle with area $1\left(\mathrm{~cm}^{2}\right)$. Points D, E and F lie on the sides $A B, B C$ and $C A$, respectively. Prove that

$$
\min \{\text { Area of } \triangle A D F, \text { Area of } \triangle B E D, \text { Area of } \triangle C E F\} \leq \frac{1}{4}\left(\mathrm{~cm}^{2}\right)
$$

Answer.

From the equalities

$$
\frac{S_{A D F}}{S_{A B C}}=\frac{A D \times A F}{A B \times A C}, \quad \frac{S_{B E D}}{S_{A B C}}=\frac{B D \times B F}{A B \times A C}, \quad \frac{S_{C E F}}{S_{A B C}}=\frac{C E \times C F}{A B \times A C}
$$

we find

$$
\begin{gathered}
\frac{S_{A D F} S_{B E D} S_{C E F}}{\left(S_{A B C}\right)^{3}}=\frac{(A D \times B D)(B E \times E C)(A F \times F C)}{A B^{2} \times A C^{2} \times B C^{2}} \\
\leq \frac{\frac{A D+D B}{2} \frac{B E+E C}{2} \frac{A F+F C}{2}}{A B^{2} \times A C^{2} \times B C^{2}}=\frac{1}{64} .
\end{gathered}
$$

Hence,

$$
S_{A D F} S_{B E D} S_{C E F} \leq \frac{1}{64}=\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}
$$

It follows that

$$
\min \{\text { Area of } \triangle A D F, \text { Area of } \triangle B E D, \text { Area of } \triangle C E F\} \leq \frac{1}{4}\left(\mathrm{~cm}^{2}\right)
$$

Question 7. Let $A B C$ be a triangle with $\widehat{A}=90^{\circ}, \widehat{B}=60^{\circ}$ and $B C=1 \mathrm{~cm}$. Draw outside of $\triangle A B C$ three equilateral triangles $A B D, A C E$ and $B C F$. Determine the area of $\triangle D E F$.

Answer.

From the assumption, we get $A B=\frac{1}{2}, A C=\frac{\sqrt{3}}{2}$ and $\widehat{D B E}=180^{\circ}$.
It is easy to check that

$$
S_{A B D}=\frac{1}{2} S_{A B C}=\frac{\sqrt{3}}{16}, \quad S_{B C F}=2 S_{A B C}=\frac{\sqrt{3}}{16} .
$$

Hence, $S_{D E F}=\frac{\sqrt{3}}{16}+\frac{\sqrt{3}}{8}+\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{16}=\frac{9 \sqrt{3}}{16} \mathrm{~cm}^{2}$.
Question 8. Let $A B C D E$ be a convex pentagon. Given that

$$
S_{\triangle A B C}=S_{\triangle B C D}=S_{\triangle C D E}=S_{\triangle D E A}=S_{\triangle E A B}=2 \mathrm{~cm}^{2}
$$

Find the area of the pentagon.

Answer.

From the assumption

$$
S_{\triangle A B C}=S_{\triangle B C D}=S_{\triangle C D E}=S_{\triangle D E A}=S_{\triangle E A B}=2 \mathrm{~cm}^{2},
$$

we find $A B\|E C, B C\| A D, A C\|D E, A E\| B D$.

Let O be the common point of $B D$ and $C E$. Denote $S_{B C O}=x$. Since $A B O E$ is a parallelogram, then $S_{A B E}=S_{B O E}=2$ and

$$
S_{A B C D E}=S_{A B E}+S_{B O E}+S_{C D E}+S_{B O C}=6+x .
$$

From

$$
\frac{S_{B O C}}{S_{D O C}}=\frac{B O}{O D}=\frac{S_{B O E}}{S_{D O E}}
$$

it follows $\frac{x}{2-x}=\frac{2}{x}$ since $S_{B O C}=S_{D O E}$, i.e. $x^{2}+2 x+1=5$ and then $x=\sqrt{5}-1$. Hence

$$
S_{A B C D E}=S_{A B E}+S_{B O E}+S_{C D E}+S_{B O C}=6+x=6+\sqrt{5}-1=5+\sqrt{5} \mathrm{~cm}^{2} .
$$

Question 9. Solve the following system in positive numbers

$$
\left\{\begin{array}{l}
x+y \leq 1 \\
\frac{2}{x y}+\frac{1}{x^{2}+y^{2}}=10
\end{array}\right.
$$

Answer.

For every root (x, y) of the system, we find

$$
10=\frac{2}{x y}+\frac{1}{x^{2}+y^{2}}=\left(\frac{1}{2 x y}+\frac{1}{x^{2}+y^{2}}\right)+\frac{6}{4 x y} \geq \frac{4}{(x+y)^{2}}+\frac{6}{(x+y)^{2}} \geq 4+6=10 .
$$

Hence, the system is equivalent to

$$
\left\{\begin{array}{l}
x+y=1 \\
x=y
\end{array} \Leftrightarrow(x, y)=\left(\frac{1}{2}, \frac{1}{2}\right) .\right.
$$

Question 10. Consider the set of all rectangles with a given perimeter p. Find the largest value of

$$
M=\frac{S}{2 S+p+2},
$$

where S is denoted the area of the rectangle.

Answer.

Let a, b be the lengths of sides of the rectangle, then $2(a+b)=p, a b=S$. By the Cauchy inequality, $p=2(a+b) \geq 2 \times 2 \sqrt{a b}=4 \sqrt{S}$. It follows $S \leq \frac{p^{2}}{16}$. Note that $0<M<1$, then

$$
M=\frac{S}{2 S+p+2} \leq \frac{\frac{p^{2}}{16}}{\frac{p^{2}}{16}+p+2}=\frac{p^{2}}{p^{2}+16 p+32} .
$$

The equality holds for $a=b$, i.e. $A B C D$ is a square.

Question 11. The positive numbers a, b, c, d, e are such that the following identity hold for all real number x.

$$
(x+a)(x+b)(x+c)=x^{3}+3 d x^{2}+3 x+e^{3} .
$$

Find the smallest value of d.

Answer.

From the identity

$$
(x+a)(x+b)(x+c)=x^{3}+3 d x^{2}+3 x+e^{3}
$$

we find

$$
\left\{\begin{array}{l}
d=\frac{a+b+c}{3} \\
a b+b c+c a=3
\end{array}\right.
$$

Hence, by Cauchy inequality $(a+b+c)^{2} \geq 3(a b+b c+c a)$, we get $d=\frac{a+b+c}{3} \geq \sqrt{\frac{a b+b c+c a}{3}}=$

1. The equality holds for $a=b=c=1$.

Question 12. If $f(x)=a x^{2}+b x+c$ safisfies the condition

$$
|f(x)|<1, \quad \forall x \in[-1,1]
$$

prove that the equation $f(x)=2 x^{2}-1$ has two real roots.

Answer.

Rewrite the equation $f(x)=2 x^{2}-1$ in the form

$$
\begin{equation*}
g(x):=(2-a) x^{2}-b x-1-c=0 . \tag{1}
\end{equation*}
$$

By the assumption,

$$
\left\{\begin{array} { l }
{ f (- 1) = a - b + c } \\
{ f (1) = a + b + c } \\
{ f (0) = c }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
a=\frac{1}{2}[f(1)+f(-1)]-f(0) \\
b=\frac{1}{2}[f(1)-f(-1)] \\
c=f(0)
\end{array}\right.\right.
$$

Hence, $|a|<2$ and $|c|<1$. These follow the equation (1) is a quadratic equation with $2-a>0$ and $-1-c<0$ then its discriminant $\Delta=b^{2}-4(2-a)(-1-c)>0$, i.e. the equation (1) has real roots.

Question 13. Solve the system of equations

$$
\left\{\begin{array}{l}
\frac{1}{x}+\frac{1}{y}=\frac{1}{6} \\
\frac{3}{x}+\frac{2}{y}=\frac{5}{6}
\end{array}\right.
$$

Answer.

It is easy to check that

$$
\left\{\begin{array} { l }
{ \frac { 1 } { x } + \frac { 1 } { y } = \frac { 1 } { 6 } } \\
{ \frac { 3 } { x } + \frac { 2 } { y } = \frac { 5 } { 6 } }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ \frac { 3 } { x } + \frac { 3 } { y } = \frac { 3 } { 6 } } \\
{ \frac { 3 } { x } + \frac { 2 } { y } = \frac { 5 } { 6 } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\frac{1}{y}=-\frac{1}{3} \\
\frac{1}{x}=\frac{1}{2}
\end{array} \Leftrightarrow(x, y)=(2,-3)\right.\right.\right.
$$

Question 14. Solve the system of equations

$$
\begin{cases}x^{3}+y & =x^{2}+1 \\ 2 y^{3}+z & =2 y^{2}+1 \\ 3 z^{3}+x & =3 z^{2}+1\end{cases}
$$

Answer.

Rewrite the system in the form

$$
\begin{cases}x^{2}(x-1) & =1-y \\ 2 y^{2}(y-1) & =1-z \\ 3 z^{2}(z-1) & =1-x\end{cases}
$$

It follows that

$$
\begin{equation*}
(x-1)(y-1)(z-1)\left(6 x^{2} y^{2} z^{2}+1\right)=0 . \tag{1}
\end{equation*}
$$

Since $6 x^{2} y^{2} z^{2}+1>0$ for all x, y, z then $(1) \Leftrightarrow x=1$ or $y=1$ or $z=1$. For all cases, we always obtain the unique solution $(x, y, z)=(1,1,1)$.

Question 15. Denote by \mathbb{Q} and \mathbb{N}^{*} the set of all rational and positive integer numbers, respectively. Suppose that $\frac{a x+b}{x} \in \mathbb{Q}$ for every $x \in \mathbb{N}^{*}$. Prove that there exist integers A, B, C such that

$$
\frac{a x+b}{x}=\frac{A x+B}{C x} \text { for all } x \in \mathbb{N}^{*}
$$

Answer.

Putting $x=1, x=2$ in $\frac{a x+b}{x}$ we get $a+b=p, \frac{2 a+b}{2}=q$, where $p, q \in \mathbb{Q}$. So $a=2 q-p \in \mathbb{Q}$ and $b=2 p-2 q \in \mathbb{Q}$. Write $a=\frac{M}{N}, b=\frac{P}{Q}$, where M, N, P, Q are integers. Hence

$$
\frac{a x+b}{x}=\frac{\frac{M}{N} x+\frac{P}{Q}}{x}=\frac{(M Q) x+(P N)}{(N Q) x},
$$

which was to be proved.

