Hanoi Mathematical Society
 Hanoi Open Mathematics Competition 2013

Senior Section

Sunday, 24 March 2013
08h30-11h30

Question 1. How may three-digit perfect squares are there such that if each digit is increased by one, the resulting number is also a perfect square?
(A): 1;
(B): 2;
(C): 4;
(D): 8;
(E) None of the above.

Answer: (A-E).
Question 2. The smallest value of the function

$$
f(x)=|x|+\left|\frac{1-2013 x}{2013-x}\right|
$$

where $x \in[-1,1]$ is
(A): $\frac{1}{2012}$;
(B): $\frac{1}{2013}$;
(C): $\frac{1}{2014}$;
(D): $\frac{1}{2015}$;
(E): None of the above.

Answer: (B).
Note that $f(x)=|x|+\left|\frac{\frac{1}{2013}-x}{1-\frac{x}{2013}}\right| \geq \geq|x|+\frac{1}{2013}-|x|=\frac{1}{2013}$. And $f(x)=\frac{1}{2013}$ for $x=\frac{1}{2013}$.
Question 3. What is the largest integer not exceeding $8 x^{3}+6 x-1$, where $x=\frac{1}{2}(\sqrt[3]{2+\sqrt{5}}+$ $\sqrt[3]{2-\sqrt{5}}) ?$
(A): 1 ;
(B): 2;
(C): 3;
(D): 4;
(E) None of the above.

Answer: (C).
Note that $4 x^{3}+3 x=2$, then $8 x^{3}+6 x-1=2.2-1=3$.
Question 4. Let $x_{0}=[\alpha], x_{1}=[2 \alpha]-[\alpha], x_{2}=[3 \alpha]-[2 \alpha], x_{4}=[5 \alpha]-[4 \alpha], x_{5}=[6 \alpha]-[5 \alpha]$, \ldots, where $\alpha=\frac{\sqrt{2013}}{\sqrt{2014}}$. The value of x_{9} is
(A): 2;
(B): 3;
(C): 4;
(D): 5;
(E): None of the above.

Answer: (E).

Note that $[(n+1) \alpha] \leq[n \alpha+1]=[n \alpha]+1$ for all $n \in \mathbb{N}$. Hence $[(n+1) \alpha]-[n \alpha] \leq 1$ for all $n \in \mathbb{N}$.

Question 5. The number n is called a composite number if it can be written in the form $n=a \times b$, where a, b are positive integers greater than 1 .

Write number 2013 in a sum of m composite numbers. What is the largest value of m ?
(A): 500;
(B): 501;
(C): 502;
(D): 503; (E): None of the above.

Answer: (C).
Question 6. Let be given $a \in\{0,1,2,3, \ldots, 1006\}$. Find all $n \in\{0,1,2,3, \ldots, 2013\}$ such that $C_{2013}^{n}>C_{2013}^{a}$, where $C_{m}^{k}=\frac{m!}{k!(m-k)!}$.

Answer.

If $a=1006$ there is no n.
If $a \in\{0,1,2,3, \ldots, 1005\}$, then $x \in\{a+1, a+2, \ldots, 2012-a\}$.
Question 7. Let $A B C$ be an equilateral triangle and a point M inside the triangle such that $M A^{2}=M B^{2}+M C^{2}$. Draw an equilateral triangle $A C D$ where $D \neq B$. Let the point N inside $\triangle A C D$ such that $A M N$ is an equilateral triangle. Determine $\widehat{B M C}$.

Answer.

Putting $M A=a ; M B=b ; M C=c$. then $a^{2}=b^{2}+c^{2}$. It is easy to check that $\triangle A N C=\triangle A M B$ then $N C=M B=b$.

In $\triangle M C N$ we find $N C^{2}+M C^{2}=b^{2}+c^{2}=a^{2}=M N^{2}$, so $\widehat{M C N}=90^{0}$. Hence

$$
\widehat{M B C}+\widehat{M C B}=\widehat{N C D}+\widehat{M C B}=120^{\circ}-90^{\circ}=30^{\circ}
$$

It follows $\widehat{B M C}=150^{0}$.
Question 8. Let $A B C D E$ be a convex pentagon and
area of $\triangle A B C=$ area of $\triangle B C D=$ area of $\triangle C D E=$ area of $\triangle D E A=$ area of $\triangle E A B$.
Given that area of $\triangle A B C D E=2$. Evaluate the area of area of $\triangle A B C$.

Answer.

Write $S_{A B C}:=$ Area of $A B C$. Since $S_{A B C}=S_{A B E}(=a)$ then $C E$ is parallel to $A B . S_{D B C}=$ $S_{E C D}$ follows $B E \| C D$. Similarly, we find $A C\|D E ; B D\| A E ; A D \| B C$.

Let O be the common point of $B D$ and $C E$ and $S_{B C O}=x$. Since $A B O E$ is a parallellogram then $S_{A B E}=S_{B O E}=a$. Hence $2=S_{A B C D E}=S_{A B E}+S_{B O E}+S_{C D E}+S_{B O C}=3 a+x$. Hence $a=\frac{2-x}{3}$.

Note that $\frac{S_{B O C}}{S_{D O C}}=\frac{B O}{O D}=\frac{S_{B O E}}{S_{D O E}}$ then we have $5 x^{2}-10 x+4=0$. It follows $x=\frac{5-\sqrt{5}}{5}$.
Question 9. A given polynomial $P(t)=t^{3}+a t^{2}+b t+c$ has 3 distinct real roots. If the equation $\left(x^{2}+x+2013\right)^{3}+a\left(x^{2}+x+2013\right)^{2}+b\left(x^{2}+x+2013\right)+c=0$ has no real roots, prove that $P(2013)>\frac{1}{64}$.

Answer.

By condition,

$$
P(x)=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right),
$$

Then

$$
P(Q(x))=\left(Q(x)-x_{1}\right)\left(Q(x)-x_{2}\right)\left(Q(x)-x_{3}\right),
$$

where

$$
Q(x)-x_{i} \neq 0, i=1,2,3
$$

Calculating the discriminants, we get

$$
D_{i}=1-4\left(2013-x_{i}\right)<0
$$

and

$$
2013-x_{i}>\frac{1}{4}
$$

Therefore

$$
P(2013)=\left(2013-x_{i}\right)\left(2013-x_{2}\right)\left(2013-x_{3}\right)>\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}=\frac{1}{64} .
$$

Question 10. Consider the set of all rectangles with a given area S. Find the largest value of

$$
M=\frac{16-p}{p^{2}+2 p}
$$

where p is the perimeter of the rectangle.

Answer.

Let a, b be the side-lengths of the rectangle. Consider the case of all rectangles such that there esists a $p=2(a+b)$ possessing the property $0<p<16$ with a given area S. Using the inequality $p=2(a+b) \geq 4 \sqrt{S}$, we find

$$
M=\frac{16-p}{p^{2}+2 p} \leq \frac{16-4 \sqrt{S}}{(4 \sqrt{S})^{2}+2 \times 4 \sqrt{S}}=\frac{4-\sqrt{S}}{4 S+2 \sqrt{S}}
$$

The equality holds iff $a=b$, i.e. $A B C D$ is a square.

Note that, if for all side-lengths of rectangles $p>16$, then $M(p)=\frac{16-p}{p^{2}+2 p}<0$ and for that cases, there is no largest value of M. Indeed, it is easy to see that for every $M_{0}<0$, always there exists p such that $M(p)=\frac{16-p}{p^{2}+2 p}>M_{0}$.
Question 11. The positive numbers a, b, c, d, p, q are such that $(x+a)(x+b)(x+c)(x+d)=x^{4}+4 p x^{3}+6 x^{2}+4 q x+1$ holds for all real numbers x.

Find the smallest value of p or the largest value of q.

Answer.

The identity

$$
(x+a)(x+b)(x+c)(x+d)=x^{4}+4 p x^{3}+6 x^{2}+4 q x+1 \text { holds for all real numbers } x
$$

means that $p=\frac{a+b+c+d}{4}, a b c d=1$. The AM-GM inequality gives $p \geq 1$ and $\min p=\frac{1}{4}$ when $a=b=c=d=1$. On the other hand,

$$
\frac{a b+a c+a d+b c+b d+c d}{6}=1
$$

and

$$
\frac{a b c+a b d+a c d+b c d}{4}=q .
$$

From the inequality

$$
\left(\frac{a b+a c+a d+b c+b d+c d}{6}\right)^{3} \geq\left(\frac{a b c+a b d+a c d+b c d}{4}\right)^{2}
$$

we find $q \leq 1$ and $\max q=1$ when $a=b=c=d=1$.
Question 12. The function $f(x)=a x^{2}+b x+c$ safisfies the following conditions: $f(\sqrt{2})=3$, and

$$
|f(x)| \leq 1, \text { for all } x \in[-1,1] .
$$

Evaluate the value of $f(\sqrt{2013})$.

Answer.

Condider the polynomial $Q(x):=2 x^{2}-1-f(x)$. Note that $\operatorname{deg} Q(x) \leq 2$ and $Q(-1)=$ $1-f(-1) \geq 0, Q(0)=1-f(0) \leq 0, Q(1)=1-f(1) \geq 0$. Then the equation $Q(x)=0$ has at least 2 real roots in $[-1,1]$. On the other hand, $Q(\sqrt{2})=f(\sqrt{2})-2(\sqrt{2})^{2}-1=0$. So $Q(x) \equiv 0$. It means that $f(x)=2 x^{2}-1$ and $f(\sqrt{2013})=2.2013-1=4025$.

Question 13. Solve the system of equations

$$
\left\{\begin{array}{l}
x y=1 \\
\frac{x}{x^{4}+y^{2}}+\frac{y}{x^{2}+y^{4}}=1
\end{array}\right.
$$

Answer.

Using the inequalities $\frac{x^{2} y}{x^{4}+y^{2}}=\frac{1}{\frac{x^{2}}{y}+\frac{y}{x^{2}}} \leq \frac{1}{2}$ and $\frac{x y^{2}}{x^{2}+y^{4}}=\frac{1}{\frac{x}{y^{2}}+\frac{y^{2}}{x}} \leq \frac{1}{2}$. Hence, for every root (x, y) of the system, we find

$$
\left\{\begin{array}{l}
x y=1 \\
1=\frac{x}{x^{4}+y^{2}}+\frac{y}{x^{2}+y^{4}}=\frac{x^{2} y}{x^{4}+y^{2}}+\frac{x y^{2}}{x^{2}+y^{4}} \leq 1
\end{array}\right.
$$

So x, y must satisfy the system

$$
\left\{\begin{array}{l}
x y=1 \\
\frac{x}{y^{2}}=\frac{y^{2}}{x} \\
\frac{x^{2}}{y}=\frac{y}{x^{2}}
\end{array}\right.
$$

and then $x=y=1$. Indeed, $(x, y)=(1,1)$ satisfies the given system.
Question 14. Solve the system of equations:

$$
\left\{\begin{array}{l}
x^{3}+\frac{1}{3} y=x^{2}+x-\frac{4}{3} \\
y^{3}+\frac{1}{4} z=y^{2}+y-\frac{5}{4} \\
z^{3}+\frac{1}{5} x=z^{2}+z-\frac{6}{5}
\end{array}\right.
$$

Answer.

Rewrite the system in the form

$$
\left\{\begin{array}{l}
(x+1)(x-1)^{2}=-\frac{1}{3}(y+1) \\
(y+1)(y-1)^{2}=-\frac{1}{3}(z+1) \\
(z+1)(z-1)^{2}=-\frac{1}{3}(x+1)
\end{array}\right.
$$

We find $(x+1)(y+1)(z+1)\left[(x-1)^{2}(y-1)^{2}(y-1)^{2}+\frac{1}{3}\right]=0$. It follows $(x, y, z)=(-1,-1,-1)$ is a unique solution of the given system.

Question 15. Denote by \mathbb{Q} and \mathbb{N}^{*} the set of all rational and positive integral numbers, respectively. Suppose that $\frac{a x+b}{c x+d} \in \mathbb{Q}$ for every $x \in \mathbb{N}^{*}$. Prove that there exist integers A, B, C, D such that

$$
\frac{a x+b}{c x+d}=\frac{A x+B}{C x+D} \text { for all } x \in \mathbb{N}^{*} .
$$

Answer.

Write $f(x)=\frac{a x+b}{c x+d}$.

- If $c=0$ then $f(x)=\alpha x+\beta \in \mathbb{Q}$ for every $x \in \mathbb{N}^{*}$. It follows $\alpha, \beta \in \mathbb{Q}$ and $\alpha=\frac{P}{Q}$, $\beta=\frac{M}{N}$, where $P, Q, M, N \in \mathbb{Z}$. Thus, $f(x)=\frac{P}{Q} x+\frac{M}{N}=\frac{P N x+Q N}{0 x+Q N}$.
- If $a=0, b=0$ then $f(x) \equiv 0$.
- If $a=0, b \neq 0$ then $f(x)=\frac{1}{\alpha x+\beta} \in \mathbb{Q}$ for every $x \in \mathbb{N}^{*}$. It follows $\alpha, \beta \in \mathbb{Q}$ and $\alpha=\frac{P}{Q}, \beta=\frac{M}{N}$ then $f(x)=\frac{0 x+Q N}{P N x+Q N}$.
- If $a d-b c=0$ then $f(x) \equiv c \in \mathbb{Q}$.
- Now consider the case $a \neq 0, c \neq 0, a d-b c \neq 0$. By the assumption, $f(1)=\frac{P_{1}}{Q_{1}}$, $P_{1}, Q_{1} \in \mathbb{Z}$. Write

$$
\begin{equation*}
f(x)-f(1)=\frac{x-1}{\gamma x+\delta} \tag{*}
\end{equation*}
$$

then $\gamma, \delta \in \mathbb{Q}$ and $\gamma=\frac{M_{1}}{N_{1}}, \delta=\frac{M_{2}}{N_{2}}$, where $M_{1}, M_{2}, N_{1}, N_{2} \in \mathbb{Z}$. Putting the values of $f(1), \gamma, \delta$ in the formula $(*)$, we find

$$
\frac{a x+b}{c x+d}=\frac{A x+B}{C x+D} \text { for all } x \in \mathbb{N}^{*}
$$

