International Mathematical Competition 2010 Blagoevgrad, Bulgaria

First day Time allowed: 5 hours

Problem 1 (10 points). Let 0 < a < b. Prove that

$$\int_{a}^{b} (x^{2} + 1)e^{-x^{2}} dx \ge e^{-a^{2}} - e^{-b^{2}}.$$

Solution 1. Let $f(x) = \int_a^x (t^2 + 1)e^{-t^2} dt$ and let $g(x) = -e^{-x^2}$; both functions are increasing. By Cauchy's Mean Value Theorem, there exists a real number $x_0 \in (a, b)$ such that

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(x_0)}{g'(x_0)} = \frac{(x_0^2 + 1)e^{-x_0^2}}{2x_0e^{-x_0^2}} = \frac{1}{2}\left(x_0 + \frac{1}{x_0}\right) \ge 1.$$

Then

$$\int_{a}^{b} (x^{2} + 1)e^{-x^{2}} dx = f(b) - f(a) \ge g(b) - g(a) = e^{-a^{2}} - e^{-b^{2}}.$$

Solution 2. The inequality $x^1 + 1 \ge 2x$ follows

$$\int_{a}^{b} (x^{2} + 1)e^{-x^{2}} dx \ge \int_{a}^{b} 2xe^{-x^{2}} dx = -e^{-x^{2}} \Big|_{a}^{b} = e^{-a^{2}} - e^{-b^{2}}.$$

Problem 2 (10 points). Compute the sum of the series

$$\sum_{k=0}^{\infty} \frac{1}{(4k+1)(4k+2)(4k+3)(4k+4)} = \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \frac{1}{5 \cdot 6 \cdot 7 \cdot 8} + \cdots$$

Solution 1. Let

$$\sum_{k=0}^{\infty} \frac{x^{4k+4}}{(4k+1)(4k+2)(4k+3)(4k+4)}.$$

The power series converges for $|x| \leq 1$ and our goal is to compute F(1). Differentiating 4 times, we get

$$F^{(4)}(x) = \sum_{k=0}^{\infty} x^{4k} = \frac{1}{1 - x^4}.$$

Since F(0) = F'(0) = F''(0) = F''(0) = 0 and F is continuous at 1 - 0 by Abel's continuity theorem, integrating 4 times we get

$$F'''(y) = F'''(0) + \int_0^y F^{(4)}(x) dx = \int_0^y \frac{dx}{1 - x^4} = \frac{1}{2} \arctan y + \frac{1}{4} \log(1 + y) - \frac{1}{4} \log(1 - y),$$

$$F''(z) = F''(0) + \int_0^z F^{(3)}(y) dy = \int_0^z \left(\frac{1}{2}\arctan y + \frac{1}{4}\log(1+y) - \frac{1}{4}\log(1-y)\right) dy = \frac{1}{2}\left(z\arctan z - \int_0^z \frac{ydy}{1+y^2}\right) + \frac{1}{4}\left((1+z)\log(1+z) - \int_0^z dy\right) + \frac{1}{4}\left((1-z)\log(1-z) + \int_0^z dy\right)$$

$$= \frac{1}{2}z\arctan z - \frac{1}{4}\log(1+z^2) + \frac{1}{4}(1+z)\log(1+z) + \frac{1}{4}(1-z)\log(1-z),$$

$$\begin{split} F'(t) &= \int_0^t \left(\frac{1}{2}z\arctan z - \frac{1}{4}\log(1+z^2) + \frac{1}{4}(1+z)\log(1+z) + \frac{1}{4}(1-z)\log(1-z)\right) \mathrm{d}z = \\ &= \frac{1}{4}\Big((1+t^2)\arctan t - t\Big) - \frac{1}{4}\Big(t\log(1+t^2) - 2t + 2\arctan t\Big) + \\ &\quad + \frac{1}{8}\Big((1+t^2)\log(1+t) - t - \frac{1}{2}t^2\Big) - \frac{1}{8}\Big((1-t^2)\log(1-t) + t - \frac{1}{2}t^2\Big) = \\ &= \frac{1}{4}(-1+t^2)\arctan t - \frac{1}{4}t\log(1+t^2) + \frac{1}{8}(1+t^2)\log(1+t) - \frac{1}{8}(1-t^2)\log(1-t), \end{split}$$

$$F(1) = \int_0^1 F'(t) \mathrm{d}t =$$

$$= \int_0^1 \left(\frac{1}{4} (-1 + t^2) \arctan t - \frac{1}{4} t \log(1 + t^2) + \frac{1}{8} (1 + t^2) \log(1 + t) - \frac{1}{8} (1 - t^2) \log(1 - t) \right) dt$$

$$= \left[\frac{-3t + t^3}{12} \arctan t + \frac{1 - 3t^2}{24} \log(1 + t^2) + \frac{(1 + t)^3}{24} \log(1 - t) \right]_0^1 = \frac{\ln 2}{4} - \frac{\pi}{24}.$$

Remark. The computation can be shorter if we change the order of integrations

$$F(1) = \int_{t=0}^{1} \int_{z=0}^{t} \int_{y=0}^{z} \int_{x=0}^{y} \frac{1}{1-x^{4}} dx dy dz dt = \int_{x=0}^{1} \frac{1}{1-x^{4}} \int_{y=x}^{1} \int_{z=y}^{1} \int_{t=z}^{1} dt dz dy dx$$

$$= \int_{x=0}^{1} \frac{1}{1-x^{4}} \left(\frac{1}{6} \int_{y=x}^{1} \int_{z=y}^{1} \int_{t=z}^{1} dt dz dy\right) dx = \int_{0}^{1} \frac{1}{1-x^{4}} \cdot \frac{(1-x)^{3}}{6} dx$$

$$= \left[-\frac{1}{6} \arctan x - \frac{1}{12} \log(1+x^{2}) + \frac{1}{3} \log(1+x) \right]_{0}^{1} = \frac{\ln 2}{4} - \frac{\pi}{24}.$$

Solution 2. Let

$$A_m = \sum_{k=0}^{\infty} \frac{1}{(4k+1)(4k+2)(4k+3)(4k+4)} =$$

$$= \sum_{k=0}^{\infty} \left(\frac{1}{6} \cdot \frac{1}{4k+1} - \frac{1}{2} \cdot \frac{1}{4k+2} + \frac{1}{2} \cdot \frac{1}{4k+3} - \frac{1}{6} \cdot \frac{1}{4k+4}\right) = \frac{1}{3}C_m - \frac{1}{6}B_m - \frac{1}{6}D_m,$$

where

$$C_m = \sum_{k=0}^{\infty} \left(\frac{1}{4k+1} - \frac{1}{4k+2} + \frac{1}{4k+3} - \frac{1}{4k+4} \right),$$

$$B_m = \sum_{k=0}^{\infty} \left(\frac{1}{4k+1} - \frac{1}{4k+3} \right), \quad D_m = \sum_{k=0}^{\infty} \left(\frac{1}{4k+2} - \frac{1}{4k+4} \right).$$

Therefore,

$$\lim_{m \to \infty} A_m = \lim_{m \to \infty} \frac{2C_m - B_m - D_m}{6} = \frac{2\ln 2 - \frac{\pi}{4} - \frac{1}{2}\ln 2}{6} = \frac{\ln 2}{4} - \frac{\pi}{24}.$$

Problem 3 (10 points). Define the sequence x_1, x_2, \ldots , inductively by $x_1 = \sqrt{5}$ and $x_{n+1} = x_n^2 - 2$ for each $n \ge 1$. Compute

$$\lim_{n\to\infty}\frac{x_1x_2\cdots x_n}{x_{n+1}}\cdot$$

Solution. Let $y_n = n^2$. Then $y_{n+1} = (y_n - 2)^2$ and $y_{n+1} - 4 = y_n(y_n - 4)$. Since $y_2 = 9 > 5$, we have $y_3 = (y_2 - 2)^2 > 5$ and inductively $y_n > 5$, $n \ge 2$. Hence, $y_{n+1} - y_n = y_n^2 - 5y_n + 4 > 4$ for all $n \ge 2$, so $y_n \to \infty$.

By $y_{n+1} - 4 = y_n(y_n - 4)$, we find

$$\left(\frac{x_1 x_2 \cdots x_n}{x_{n+1}}\right)^2 = \frac{y_1 y_2 \cdots y_n}{y_{n+1}}$$

$$= \frac{y_{n+1} - 4}{y_{n+1}} \cdot \frac{y_1 y_2 \cdots y_n}{y_{n+1} - 4} = \frac{y_{n+1} - 4}{y_{n+1}} \cdot \frac{y_1 y_2 \cdots y_{n-1}}{y_n - 4} = \cdots$$

$$= \frac{y_{n+1} - 4}{y_{n+1}} \cdot \frac{1}{y_1 - 4} = \frac{y_{n+1} - 4}{y_{n+1}} \to 1.$$

Therefore,

$$\lim_{n \to \infty} \frac{x_1 x_2 \cdots x_n}{x_{n+1}} = 1.$$

Problem 4 (10 points). Let a, b be two integers and suppose that n is a positive integer for which the set

$$\mathbb{Z} \setminus \{ax^n + by^n \mid x, y \in \mathbb{Z}\}\$$

is finite. Prove that n = 1. Prove that n = 1.

Solution. Assume that n > 1. Notice that n may be replaced by any prime divisor p of n. Moreover, a and b should be coprime, otherwise the numbers not divisible by the greatest common divisor of a, b can not be represented as $ax^n + by^n$.

If n=2, then the number of form ax^n+by^n takes not all possible remanders modulo 8. If, say, b is even, then ax^2 takes at most three different remanders modulo 8. by^2 takes at most two, hence ax^n+by^n takes at most $3\times 3=6$ different remanders. If both a and b are odd, then $ax^n+by^n\equiv x^2\pm y^2\pmod 4$: the expression x^2+y^2 does not take the remanders 3 modulo 4 and x^2-y^2 does take the remander 2 modulo 4.

Consider the case when $p \geq 3$. The pth powers take exactly p different remanders modulo p^2 . Indeed, $(x+kp)^p$ and x^p have the same remander modulo p^2 , and all numbers $0^p, 1^p, \ldots, (p-1)^p$ are different even modulo p. So, $ax^p + by^p$ take at most p^2 different remanders modulo p^2 . If it takes strictly less then p^2 different remanders modulo p^2 , we get infinitely many non-reprentable numbers. If it takes exactly p^2 remanders, then $ax^p + by^p$ is divisible by p^2 , it is also divisible by p^p . Again we get infinitely many non-reprentable numbers, for example the numbers congruent to p^2 are non-reprentable numbers.

Problem 5 (10 points). Suppose that a, b, c are real numbers in the interval [-1, 1] such that

$$1 + 2abc \ge a^2 + b^2 + c^2.$$

Prove that

$$1 + 2(abc)^n \ge a^{2n} + b^{2n} + c^{2n}$$

for all positive integers n.

Solution. The constraint can be written as

$$(a - bc)^2 \le (1 - b^2)(1 - c^2). \tag{1}$$

By the Cauchy-Schwarz inequality,

$$(a^{n-1} + a^{n-2}bc + \cdots b^{n-1}c^{n-1})^2 \le (|a|^{n-1} + |a|^{n-2}|bc| + |bc|^{n-1})$$

$$\le (1 + |bc| + \cdots + |bc|^{n-1})^2 \le (1 + |b|^2 + \cdots + |b|^{2(n-1)}) \cdot (1 + |c|^2 + \cdots + |c|^{2(n-1)}).$$
Multilying by (1), we get

$$(a - bc)^{2}(a^{n-1} + a^{n-2}bc + \cdots b^{n-1}c^{n-1})^{2} \le$$

$$(1 - b^{2})(1 + |b|^{2} + \cdots + |b|^{2(n-1)}) \cdot (1 - c^{2})(1 + |c|^{2} + \cdots + |c|^{2(n-1)})$$

$$\Leftrightarrow (a^{n} - b^{n}c^{n})^{2} \le (1 - b^{2n})(1 - c^{2n}) \Leftrightarrow 1 + 2(abc)^{n} \ge a^{2n} + b^{2n} + c^{2n}$$

International Mathematical Competition 2010 Blagoevgrad, Bulgaria

Second day

Time allowed: 5 hours

Problem 6 (10 points). (a) A sequence x_1, x_2, \ldots of real numbers satisfies

$$x_{n+1} = x_n \cos x_n$$
 for all $n \ge 1$.

Does it follow that this sequence converges for all initial value x_1 ?

(b) A sequence y_1, y_2, \ldots of real numbers satisfies

$$y_{n+1} = y_n \sin x_n$$
 for all $n \ge 1$.

Does it follow that this sequence converges for all initial value y_1 ? Solution.

- (a) NO. For example, for $x_1 = \pi$ we have $x_n = (-1)^n \pi$, and the sequence is divergent.
- (b) YES. Notice that $|y_n|$ is nonincreasing and hence converges to some number $a \ge 0$. If a = 0, then $\lim y_n = 0$ and we are done.

If a > 0, then $a = \lim |y_{n+1}| = \lim |y_n \sin y_n| = a |\sin a|$, so $\sin a = \pm 1$ and $a = (k + \frac{1}{2})\pi$ for some nonnegative integer k.

Since the sequence $|y_n|$ is nonincreasing, there exists an index n_0 such that

$$\left(k + \frac{1}{2}\right)\pi \le |y_n| < (k+1)\pi \text{ for all } n > n_0.$$

Then all the numbers $y_{n_0+1}, y_{n_0+2}, \dots$ lie in the union of the intervals $\left[\left(k+\frac{1}{2}\right)\pi, (k+1)\pi\right)$ and $\left(-(k+1)\pi, -\left(k+\frac{1}{2}\right)\pi\right]$

Depending on the parity of k, in one of the intervals $\left[\left(k+\frac{1}{2}\right)\pi, (k+1)\pi\right)$ and $\left(-(k+1)\pi, -\left(k+\frac{1}{2}\right)\pi\right]$ the values of the sine function is positive, denote this interval by I_+ . In the other interval the sin function is negative, denote this interval by I_- . If $y_n \in I_-$ for some $n > n_0$ then y_n and $y_{n+1} = y_n \sin y_n$ have opposite signs, so $y_{n+1} \in I_+$. On the other hand, if $y_n \in I_+$ for some $n > n_0$ then y_n and $y_{n+1} = y_n \sin y_n$ have the same sign, so $y_{n+1} \in I_+$. In both cases, $y_{n+1} \in I_+$.

We obtained that the numbers $y_{n_0+2}, y_{n_0+3}, \ldots$ lie in I_+ , so they have the same sign. Since $|y_n|$ is convergent, this implies that the sequence $\{y_n\}$ is convergent as well.

Problem 7 (10 points). Let a_0, a_1, \ldots, a_n be positive real numbers such that $a_{n+1} - a_n \ge 1$ for all $k = 0, 1, \ldots, n-1$. Prove that

$$1 + \frac{1}{a_0} \left(1 + \frac{1}{a_1 - a_0} \right) \cdots \left(1 + \frac{1}{a_n - a_0} \right) \le \left(1 + \frac{1}{a_0} \right) \left(1 + \frac{1}{a_1} \right) \cdots \left(1 + \frac{1}{a_n} \right).$$

Solution. Apply induction on n. Considering the empty product as 1, we have equality for n = 0.

Now assume that the statement is true for some n and prove it for n + 1. For n + 1, the statement can be written as the sum of the inequalities

$$1 + \frac{1}{a_0} \left(1 + \frac{1}{a_1 - a_0} \right) \cdots \left(1 + \frac{1}{a_n - a_0} \right) \le \left(1 + \frac{1}{a_0} \right) \left(1 + \frac{1}{a_1} \right) \cdots \left(1 + \frac{1}{a_n} \right)$$

(which is the induction hypothesis) and

$$\frac{1}{a_0} \left(1 + \frac{1}{a_1 - a_0} \right) \cdots \left(1 + \frac{1}{a_n - a_0} \right) \cdot \frac{1}{a_{n+1} - a_0} \le \left(1 + \frac{1}{a_0} \right) \left(1 + \frac{1}{a_1} \right) \cdots \left(1 + \frac{1}{a_n} \right) \cdot \frac{1}{a_{n+1}}. \tag{1}$$

Hence, to complete the solution it is sufficient to prove (1).

To prove (1), apply a second induction. For n = 0, we have to verify

$$\frac{1}{a_0} \cdot \frac{1}{a_1 - a_0} \le \left(1 + \frac{1}{a_0}\right) \frac{1}{a_1}$$

Multiplying by $a_0a_1(a_1-a_0)$, this is equivalent with

$$a_1 \le (a_0 + 1)(a_1 - a_0) \Leftrightarrow a_0 \le a_0 a_1 - a_0^2 \Leftrightarrow 1 \le a_1 - a_0.$$

For the induction step it is sufficient that

$$\left(1 + \frac{1}{a_{n+1} - a_0}\right) \cdot \frac{a_{n+1} - a_0}{a_{n+2} - a_0} \le \left(1 + \frac{1}{a_{n+1}}\right) \cdot \frac{a_{n+1}}{a_{n+2}}$$

Multiplying by $(a_{n+2} - a_0)a_{n+2}$,

$$(a_{n+1} - a_0 + 1)a_{n+2} < (a_{n+1} + 1)(a_{n+2} - a_0)$$

$$\Leftrightarrow a_0 \le a_0 a_{n+2} - a_0 a_{n+1} \Leftrightarrow 1 \le a_{n+2} - a_{n+1}.$$

Note that (from the solution) the equality holds if and only if $a_{k+1} - a_k = 1$ for all k.

Remark. The statement of the problem is a direct corollary of the identity

$$1 + \sum_{i=0}^{n} \left(\frac{1}{a_i} \prod_{j \neq i} \left(1 + \frac{1}{a_j - a_i} \right) \right) = \prod_{i=0}^{n} \left(1 + \frac{1}{a_i} \right).$$

Problem 8 (10 points). Denote by S_n the group of permutations of the sequence (1, 2, ..., n). Suppose that G is a subgroup of S_n , such that for every $\pi \in G \setminus \{e\}$ there exists a unique $k \in \{1, 2, ..., n\}$ for which $\pi(k) = k$. (Here e is the unit element in the group S_n .) Show that this k is the same for all $\pi \in G \setminus \{e\}$.

Solution. Let us consider the action of G on the set $X = \{1, 2, ..., n\}$. Let

$$G_x = \{g \in G : g(x) = x\} \text{ and } Gx = \{g(x) : g \in G\}$$

be the stabilizer and the orbit of $x \in X$ under this action, respectively. The condition of the problem state that

$$G = \bigcup_{x \in X} G_x \tag{1}$$

and

$$G_x \cap G_y = \{e\} \text{ for all } x \neq y.$$
 (2)

We need to prove that $G_x = G$ for some $x \in X$.

Let Gx_1, Gx_2, \ldots, Gx_k be the distinct orbits of the action of G. Then one can write (1) as

$$G = \bigcup_{i=1}^{k} \bigcup_{y \in Gx_i} G_y. \tag{3}$$

It is well known that

$$|Gx| = \frac{|G|}{|G_x|}. (4)$$

Also note that if $y \in Gx$ then Gy = Gx and thus |Gy| = |Gx|. Therefore,

$$|G_x| = \frac{|G|}{|Gx|} = \frac{|G|}{|Gy|} = |G_y| \quad \text{for all} \quad y \in Gx.$$
 (5)

Combining (3),(2),(4) and (5) we gwt

$$|G| - 1 = |G \setminus \{e\}| = \Big|\bigcup_{i=1}^k \bigcup_{y \in G_{x_i}} G_y \setminus \{e\}\Big| = \sum_{i=1}^k \frac{|G|}{|G_{x_i}|} (|G_{x_i}| - 1),$$

hence

$$1 - \frac{1}{|G|} = \sum_{i=1}^{k} \left(1 - \frac{1}{|G_{x_i}|} \right). \tag{6}$$

If for some $i, j \in \{1, 2, \dots, k\}$ we have $|G_{x_i}|, |G_{x_j}| \ge 2$ then

$$\sum_{i=1}^{k} \left(1 - \frac{1}{|G_{x_i}|} \right) \ge \left(1 - \frac{1}{2} \right) + \left(1 - \frac{1}{2} \right) = 1 > 1 - \frac{1}{|G|},$$

which contradics with (6), thus we can assume that

$$|G_{x_1}| = |G_{x_2}| = \dots = |G_{x_{k-1}}| = 1.$$

Then from (6) we get $|G_{x_k}| = |G|$, hence $G_{x_k} = G$.

Problem 9 (10 points). Let A be symmetric $m \times m$ matrix over the two-element field all of whose diagonal entries are zero. Prove that for every positive integer n each column of matrix A^n has a zero entry.

Solution. Denote by e_k $(1 \le k \le m)$ the m-dimensional vector over F_2 , whose k-th entry is 1 and all the other elements are 0. Furthermore, let u be the vector whose all entries are 1. The k-th column of A^n is $A^n e_k$. So the statement can be written as $A^n e_k \ne u$ for all $1 \le k \le m$ and all $n \ge 1$.

For every pair of vectors $x = (x_1, ..., x_m)$ and $y = (y_1, ..., y_m)$, define the bilinear form $(x, y) = x^T y = x_1 y_1 + \cdots + x_m y_m$. The product (x, y) has all basic properties of scalar product (except the property that (x, x) = 0 implies x = 0). Moreover, we have (x, x) = (x, u) for every vector $x \in F_2^m$.

It is also easy to check that $(w, Aw) = w^T Aw = 0$ for all vectors w, since A is symmetric and its diagonal elements are 0.

Lemma. Suppose that $v \in F_2^m$ is a vector such that $A^m v = u$ for some $n \geq 1$. Then (v, v) = 0.

Proof. Apply induction by n. For odd values of n we prove the lemma directly. Let n = 2k + 1 and $w = A^k v$, then

$$(v,v) = (v,u) = (v,A^n v) = v^T A^n v = v^T A^{2k+1} v = (A^k v, A^{k+1} v) = (w,Aw) = 0.$$

Now suppose that n is even, n = 2k, and the lemma is true for all smaller values of n. Let $w = A^k v$, then $A^k w = A^n v = u$ and thus we have (w, w) = 0 by the induction hypothesis. Hence,

$$(v,v) = (v,u) = (v,A^n v) = v^T A^{2k} v = (A^k v)^T (A^k v) = (A^k v,A^k v) = (w,w) = 0.$$

The lemma is proved.

Now suppose that $A^n e_k = u$ for some $1 \le k \le m$ and positive n. By the lemma, we should have $(e_k, e_k) = 0$. But this is imposible because $(e_k, e_k) = 1 \ne 0$.

Problem 10 (10 points). Suppose that for a function $f : \mathbb{R} \to \mathbb{R}$ and real numbers a < b one has f(x) = 0 for all $x \in (a, b)$. Prove that f(x) = 0 for all $x \in \mathbb{R}$ if

$$\sum_{k=0}^{p-1} f\left(y + \frac{k}{p}\right) = 0$$

for every prime number p and every real number y.

Solution. Let N > 1 be some integer to be defined later, and consider set of all real polynomials

$$\mathcal{J}_N = \left\{ c_0 + c_1 x + \dots + c_n x^n \in \mathbb{R}[x] \mid \forall x \in \mathbb{R} \ \sum_{k=0}^n c_k f\left(x + \frac{k}{N}\right) = 0 \right\}.$$

Notice that $0 \in \mathcal{J}_N$, any linear combinations of any elements in \mathcal{J}_N is in \mathcal{J}_N , and for every $P(x) \in \mathcal{J}_N$ we have $xP(x) \in \mathcal{J}_N$. Hence, \mathcal{J}_N is an ideal of the ring $\mathbb{R}[x]$.

By the problem's conditions, for every prime divisors of N we have $\frac{x^{N}-1}{x^{N/p}-1} \in \mathcal{J}_{N}$. Since $\mathbb{R}[x]$ is a principle ideal domain (due to the Euclidean algorithm), the greatest common divisor is the intersection of such sets: it can be seen that the intersection consist of the primitive Nth roots of unity. Therefore,

$$\gcd\left\{\frac{x^N - 1}{x^{N/p} - 1} \mid p|N\right\} = \Phi_N(x)$$

is the Nth cyclotomic polynomial. So $\Phi_N \in \mathcal{J}_N$, which polynomial has degree $\varphi(N)$.

Now we choose N in such a way that $\frac{\varphi(N)}{N} < b-a$. It is well known that $\lim_{N\to\infty}\inf\frac{\varphi(N)}{N} = 0$, so there exists such a value for N. Let $\Phi_N(x) = a_0 + a_1x + \dots + a_{\varphi(N)}x^{\varphi(N)}$ where $a_\varphi = 1$ and $|a_0| = 1$.

Then, by the definition of \mathcal{J}_N , we have

$$\sum_{k=0}^{\varphi(N)} a_k f\left(x - \frac{\varphi(N) - k}{N}\right) = 0 \text{ for all } x \in \mathbb{R}.$$

If $x \in \left[b, b + \frac{1}{N}\right)$, then

$$f(x) = -\sum_{k=0}^{\varphi(N)} a_k f\left(x - \frac{\varphi(N) - k}{N}\right).$$

On the right-hand side, all numbers $x-\frac{\varphi(N)-k}{N}$ lie in (a,b). Therefore the right-hand side is zero and f(x)=0 for all $x\in \left[b,b+\frac{1}{N}\right)$. It can be obtained similarly that f(x)=0 for all $x\in \left(a-\frac{1}{N},a\right]$ as well. Hence, f=0 in the interval $\left(a-\frac{1}{N},b+\frac{1}{N}\right)$. Continuing in this fashion we see that f must vanish everywhere.

8