International Mathematical Competition 2010 Blagoevgrad, Bulgaria
 First day
 Time allowed: 5 hours

Problem 1 (10 points). Let $0<a<b$. Prove that

$$
\int_{a}^{b}\left(x^{2}+1\right) e^{-x^{2}} \mathrm{~d} x \geq e^{-a^{2}}-e^{-b^{2}}
$$

Solution 1. Let $f(x)=\int_{a}^{x}\left(t^{2}+1\right) e^{-t^{2}} \mathrm{~d} t$ and let $g(x)=-e^{-x^{2}}$; both functions are increasing. By Cauchy's Mean Value Theorem, there exists a real number $x_{0} \in(a, b)$ such that

$$
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)}=\frac{\left(x_{0}^{2}+1\right) e^{-x_{0}^{2}}}{2 x_{0} e^{-x_{0}^{2}}}=\frac{1}{2}\left(x_{0}+\frac{1}{x_{0}}\right) \geq 1 .
$$

Then

$$
\int_{a}^{b}\left(x^{2}+1\right) e^{-x^{2}} \mathrm{~d} x=f(b)-f(a) \geq g(b)-g(a)=e^{-a^{2}}-e^{-b^{2}} .
$$

Solution 2. The inequality $x^{1}+1 \geq 2 x$ follows

$$
\int_{a}^{b}\left(x^{2}+1\right) e^{-x^{2}} \mathrm{~d} x \geq \int_{a}^{b} 2 x e^{-x^{2}} \mathrm{~d} x=-\left.e^{-x^{2}}\right|_{a} ^{b}=e^{-a^{2}}-e^{-b^{2}}
$$

Problem 2 (10 points). Compute the sum of the series

$$
\sum_{k=0}^{\infty} \frac{1}{(4 k+1)(4 k+2)(4 k+3)(4 k+4)}=\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}+\frac{1}{5 \cdot 6 \cdot 7 \cdot 8}+\cdots
$$

Solution 1. Let

$$
\sum_{k=0}^{\infty} \frac{x^{4 k+4}}{(4 k+1)(4 k+2)(4 k+3)(4 k+4)}
$$

The power series converges for $|x| \leq 1$ and our goal is to compute $F(1)$.
Differentiating 4 times, we get

$$
F^{(4)}(x)=\sum_{k=0}^{\infty} x^{4 k}=\frac{1}{1-x^{4}} .
$$

Since $F(0)=F^{\prime}(0)=F^{\prime \prime}(0)=F^{\prime \prime}(0)=0$ anf F is continous at $1-0$ by Abel's continuity theorem, integrating 4 times we get

$$
\begin{gathered}
F^{\prime \prime \prime}(y)=F^{\prime \prime \prime}(0)+\int_{0}^{y} F^{(4)}(x) \mathrm{d} x=\int_{0}^{y} \frac{\mathrm{~d} x}{1-x^{4}}=\frac{1}{2} \arctan y+\frac{1}{4} \log (1+y)-\frac{1}{4} \log (1-y), \\
F^{\prime \prime}(z)=F^{\prime \prime}(0)+\int_{0}^{z} F^{(3)}(y) \mathrm{d} y=\int_{0}^{z}\left(\frac{1}{2} \arctan y+\frac{1}{4} \log (1+y)-\frac{1}{4} \log (1-y)\right) \mathrm{d} y= \\
\frac{1}{2}\left(z \arctan z-\int_{0}^{z} \frac{y \mathrm{~d} y}{1+y^{2}}\right)+\frac{1}{4}\left((1+z) \log (1+z)-\int_{0}^{z} \mathrm{~d} y\right)+\frac{1}{4}\left((1-z) \log (1-z)+\int_{0}^{z} \mathrm{~d} y\right)
\end{gathered}
$$

$$
\begin{gathered}
=\frac{1}{2} z \arctan z-\frac{1}{4} \log \left(1+z^{2}\right)+\frac{1}{4}(1+z) \log (1+z)+\frac{1}{4}(1-z) \log (1-z), \\
F^{\prime}(t)=\int_{0}^{t}\left(\frac{1}{2} z \arctan z-\frac{1}{4} \log \left(1+z^{2}\right)+\frac{1}{4}(1+z) \log (1+z)+\frac{1}{4}(1-z) \log (1-z)\right) \mathrm{d} z= \\
=\frac{1}{4}\left(\left(1+t^{2}\right) \arctan t-t\right)-\frac{1}{4}\left(t \log \left(1+t^{2}\right)-2 t+2 \arctan t\right)+ \\
\quad+\frac{1}{8}\left(\left(1+t^{2}\right) \log (1+t)-t-\frac{1}{2} t^{2}\right)-\frac{1}{8}\left(\left(1-t^{2}\right) \log (1-t)+t-\frac{1}{2} t^{2}\right)= \\
=\frac{1}{4}\left(-1+t^{2}\right) \arctan t-\frac{1}{4} t \log \left(1+t^{2}\right)+\frac{1}{8}\left(1+t^{2}\right) \log (1+t)-\frac{1}{8}\left(1-t^{2}\right) \log (1-t), \\
F(1)=\int_{0}^{1} F^{\prime}(t) \mathrm{d} t= \\
=\int_{0}^{1}\left(\frac{1}{4}\left(-1+t^{2}\right) \arctan t-\frac{1}{4} t \log \left(1+t^{2}\right)+\frac{1}{8}\left(1+t^{2}\right) \log (1+t)-\frac{1}{8}\left(1-t^{2}\right) \log (1-t)\right) \mathrm{d} t \\
=
\end{gathered}
$$

Remark. The computation can be shorter if we change the order of integrations

$$
\begin{aligned}
F(1)= & \int_{t=0}^{1} \int_{z=0}^{t} \int_{y=0}^{z} \int_{x=0}^{y} \frac{1}{1-x^{4}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} t=\int_{x=0}^{1} \frac{1}{1-x^{4}} \int_{y=x}^{1} \int_{z=y}^{1} \int_{t=z}^{1} \mathrm{~d} t \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x \\
= & \int_{x=0}^{1} \frac{1}{1-x^{4}}\left(\frac{1}{6} \int_{y=x}^{1} \int_{z=y}^{1} \int_{t=z}^{1} \mathrm{~d} t \mathrm{~d} z \mathrm{~d} y\right) \mathrm{d} x=\int_{0}^{1} \frac{1}{1-x^{4}} \cdot \frac{(1-x)^{3}}{6} \mathrm{~d} x \\
& =\left[-\frac{1}{6} \arctan x-\frac{1}{12} \log \left(1+x^{2}\right)+\frac{1}{3} \log (1+x)\right]_{0}^{1}=\frac{\ln 2}{4}-\frac{\pi}{24} .
\end{aligned}
$$

Solution 2. Let

$$
\begin{gathered}
A_{m}=\sum_{k=0}^{\infty} \frac{1}{(4 k+1)(4 k+2)(4 k+3)(4 k+4)}= \\
=\sum_{k=0}^{\infty}\left(\frac{1}{6} \cdot \frac{1}{4 k+1}-\frac{1}{2} \cdot \frac{1}{4 k+2}+\frac{1}{2} \cdot \frac{1}{4 k+3}-\frac{1}{6} \cdot \frac{1}{4 k+4}\right)=\frac{1}{3} C_{m}-\frac{1}{6} B_{m}-\frac{1}{6} D_{m},
\end{gathered}
$$

where

$$
\begin{gathered}
C_{m}=\sum_{k=0}^{\infty}\left(\frac{1}{4 k+1}-\frac{1}{4 k+2}+\frac{1}{4 k+3}-\frac{1}{4 k+4}\right), \\
B_{m}=\sum_{k=0}^{\infty}\left(\frac{1}{4 k+1}-\frac{1}{4 k+3}\right), \quad D_{m}=\sum_{k=0}^{\infty}\left(\frac{1}{4 k+2}-\frac{1}{4 k+4}\right) .
\end{gathered}
$$

Therefore,

$$
\lim _{m \rightarrow \infty} A_{m}=\lim _{m \rightarrow \infty} \frac{2 C_{m}-B_{m}-D_{m}}{6}=\frac{2 \ln 2-\frac{\pi}{4}-\frac{1}{2} \ln 2}{6}=\frac{\ln 2}{4}-\frac{\pi}{24} .
$$

Problem 3 ($\mathbf{1 0}$ points). Define the sequence x_{1}, x_{2}, \ldots, inductively by $x_{1}=\sqrt{5}$ and $x_{n+1}=x_{n}^{2}-2$ for each $n \geq 1$. Compute

$$
\lim _{n \rightarrow \infty} \frac{x_{1} x_{2} \cdots x_{n}}{x_{n+1}}
$$

Solution. Let $y_{n}=n^{2}$. Then $y_{n+1}=\left(y_{n}-2\right)^{2}$ and $y_{n+1}-4=y_{n}\left(y_{n}-4\right)$. Since $y_{2}=9>5$, we have $y_{3}=\left(y_{2}-2\right)^{2}>5$ and inductively $y_{n}>5, n \geq 2$. Hence, $y_{n+1}-y_{n}=$ $y_{n}^{2}-5 y_{n}+4>4$ for all $n \geq 2$, so $y_{n} \rightarrow \infty$.

By $y_{n+1}-4=y_{n}\left(y_{n}-4\right)$, we find

$$
\begin{gathered}
\left(\frac{x_{1} x_{2} \cdots x_{n}}{x_{n+1}}\right)^{2}=\frac{y_{1} y_{2} \cdots y_{n}}{y_{n+1}} \\
=\frac{y_{n+1}-4}{y_{n+1}} \cdot \frac{y_{1} y_{2} \cdots y_{n}}{y_{n+1}-4}=\frac{y_{n+1}-4}{y_{n+1}} \cdot \frac{y_{1} y_{2} \cdots y_{n-1}}{y_{n}-4}=\cdots \\
=\frac{y_{n+1}-4}{y_{n+1}} \cdot \frac{1}{y_{1}-4}=\frac{y_{n+1}-4}{y_{n+1}} \rightarrow 1 .
\end{gathered}
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \frac{x_{1} x_{2} \cdots x_{n}}{x_{n+1}}=1
$$

Problem 4 (10 points). Let a, b be two integers and suppose that n is a positive integer for which the set

$$
\mathbb{Z} \backslash\left\{a x^{n}+b y^{n} \mid x, y \in \mathbb{Z}\right\}
$$

is finite. Prove that $n=1$. Prove that $n=1$.
Solution. Asumme that $n>1$. Notice that n may be replaced by any prime divisor p of n. Moreover, a and b shoutd be coprime, otherwise the numbers not divisible by the greatest common divisor of a, b can not be represented as $a x^{n}+b y^{n}$.

If $n=2$, then the number of form $a x^{n}+b y^{n}$ takes not all possible remanders modulo 8. If, say, b is even, then $a x^{2}$ takes at most three different remanders modulo 8. $b y^{2}$ takes at most two, hence $a x^{n}+b y^{n}$ takes at most $3 \times 3=6$ different remanders. If both a and b are odd, then $a x^{n}+b y^{n} \equiv x^{2} \pm y^{2}(\bmod 4):$ the expression $x^{2}+y^{2}$ does not take the remanders 3 modulo 4 and $x^{2}-y^{2}$ does take the remander 2 modulo 4.

Consider the case when $p \geq 3$. The p th powers take exactly p different remanders modulo p^{2}. Indeed, $(x+k p)^{p}$ and x^{p} have the same remander modulo p^{2}, and all numbers $0^{p}, 1^{p}, \ldots,(p-1)^{p}$ are different even modulo p. So, $a x^{p}+b y^{p}$ take at most p^{2} different remanders modulo p^{2}. If it takes strictly less then p^{2} different remanders modulo p^{2}, we get infinitely many non-reprentable numbers. If it takes exactly p^{2} remanders, then $a x^{p}+b y^{p}$ is divisible by p^{2}, it is also divisible by p^{p}. Again we get infinitely many non-reprentable numbers, for example the numbers congruent to p^{2} are non-reprentable numbers.
Problem 5 (10 points). Suppose that a, b, c are real numbers in the interval $[-1,1]$ such that

$$
1+2 a b c \geq a^{2}+b^{2}+c^{2}
$$

Prove that

$$
1+2(a b c)^{n} \geq a^{2 n}+b^{2 n}+c^{2 n}
$$

for all positive integers n.
Solution. The constraint can be written as

$$
\begin{equation*}
(a-b c)^{2} \leq\left(1-b^{2}\right)\left(1-c^{2}\right) \tag{1}
\end{equation*}
$$

By the Cauchy-Schwarz inequality,

$$
\begin{gathered}
\left(a^{n-1}+a^{n-2} b c+\cdots b^{n-1} c^{n-1}\right)^{2} \leq\left(|a|^{n-1}+|a|^{n-2}|b c|+|b c|^{n-1}\right) \\
\leq\left(1+|b c|+\cdots+|b c|^{n-1}\right)^{2} \leq\left(1+|b|^{2}+\cdots+|b|^{2(n-1)}\right) \cdot\left(1+|c|^{2}+\cdots+|c|^{2(n-1)}\right)
\end{gathered}
$$

Multilying by (1), we get

$$
\begin{gathered}
(a-b c)^{2}\left(a^{n-1}+a^{n-2} b c+\cdots b^{n-1} c^{n-1}\right)^{2} \leq \\
\left(1-b^{2}\right)\left(1+|b|^{2}+\cdots+|b|^{2(n-1)}\right) \cdot\left(1-c^{2}\right)\left(1+|c|^{2}+\cdots+|c|^{2(n-1)}\right) \\
\Leftrightarrow\left(a^{n}-b^{n} c^{n}\right)^{2} \leq\left(1-b^{2 n}\right)\left(1-c^{2 n}\right) \Leftrightarrow 1+2(a b c)^{n} \geq a^{2 n}+b^{2 n}+c^{2 n} .
\end{gathered}
$$

International Mathematical Competition 2010 Blagoevgrad, Bulgaria
 Second day

Time allowed: 5 hours
Problem 6 (10 points). (a) A sequence x_{1}, x_{2}, \ldots of real numbers satisfies

$$
x_{n+1}=x_{n} \cos x_{n} \text { for all } n \geq 1
$$

Does it follow that this sequence converges for all initial value x_{1} ?
(b) A sequence y_{1}, y_{2}, \ldots of real numbers satisfies

$$
y_{n+1}=y_{n} \sin x_{n} \text { for all } n \geq 1
$$

Does it follow that this sequence converges for all initial value y_{1} ?

Solution.

(a) NO. For example, for $x_{1}=\pi$ we have $x_{n}=(-1)^{n} \pi$, and the sequence is divergent.
(b) YES. Notice that $\left|y_{n}\right|$ is nonincreasing and hence converges to some number $a \geq 0$.

If $a=0$, then $\lim y_{n}=0$ and we are done.
If $a>0$, then $a=\lim \left|y_{n+1}\right|=\lim \left|y_{n} \sin y_{n}\right|=a|\sin a|$, so $\sin a= \pm 1$ and $a=$ $\left(k+\frac{1}{2}\right) \pi$ for some nonnegative integer k.

Since the sequence $\left|y_{n}\right|$ is nonincreasing, there exists an index n_{0} such that

$$
\left(k+\frac{1}{2}\right) \pi \leq\left|y_{n}\right|<(k+1) \pi \text { for all } n>n_{0} .
$$

Then all the numbers $y_{n_{0}+1}, y_{n_{0}+2}, \ldots$ lie in the union of the intervals $\left[\left(k+\frac{1}{2}\right) \pi,(k+1) \pi\right)$ and $\left(-(k+1) \pi,-\left(k+\frac{1}{2}\right) \pi\right]$

Depending on the parity of k, in one of the intervals $\left[\left(k+\frac{1}{2}\right) \pi,(k+1) \pi\right)$ and $(-$ $\left.(k+1) \pi,-\left(k+\frac{1}{2}\right) \pi\right]$ the values of the sine function is positive, denote this interval by I_{+}. In the other interval the sin function is negative, denote this interval by I_{-}. If $y_{n} \in I_{-}$ for some $n>n_{0}$ then y_{n} and $y_{n+1}=y_{n} \sin y_{n}$ have opposite signs, so $y_{n+1} \in I_{+}$. On the other hand, if $y_{n} \in I_{+}$for some $n>n_{0}$ then y_{n} and $y_{n+1}=y_{n} \sin y_{n}$ have the same sign, so $y_{n+1} \in I_{+}$. In both cases, $y_{n+1} \in I_{+}$.

We obtained that the numbers $y_{n_{0}+2}, y_{n_{0}+3}, \ldots$ lie in I_{+}, so they have the same sign. Since $\left|y_{n}\right|$ is convergent, this implies that the sequence $\left\{y_{n}\right\}$ is convergent as well.

Problem 7 (10 points). Let $a_{0}, a_{1}, \ldots, a_{n}$ be positive real numbers such that $a_{n+1}-a_{n} \geq$ 1 for all $k=0,1, \ldots, n-1$. Prove that

$$
1+\frac{1}{a_{0}}\left(1+\frac{1}{a_{1}-a_{0}}\right) \cdots\left(1+\frac{1}{a_{n}-a_{0}}\right) \leq\left(1+\frac{1}{a_{0}}\right)\left(1+\frac{1}{a_{1}}\right) \cdots\left(1+\frac{1}{a_{n}}\right) .
$$

Solution. Apply induction on n. Considering the empty product as 1 , we have equality for $n=0$.

Now assume that the statement is true for some n and prove it for $n+1$. For $n+1$, the staterment can be written as the sum of the inequalities

$$
1+\frac{1}{a_{0}}\left(1+\frac{1}{a_{1}-a_{0}}\right) \cdots\left(1+\frac{1}{a_{n}-a_{0}}\right) \leq\left(1+\frac{1}{a_{0}}\right)\left(1+\frac{1}{a_{1}}\right) \cdots\left(1+\frac{1}{a_{n}}\right)
$$

(which is the induction hypothesis) and

$$
\begin{equation*}
\frac{1}{a_{0}}\left(1+\frac{1}{a_{1}-a_{0}}\right) \cdots\left(1+\frac{1}{a_{n}-a_{0}}\right) \cdot \frac{1}{a_{n+1}-a_{0}} \leq\left(1+\frac{1}{a_{0}}\right)\left(1+\frac{1}{a_{1}}\right) \cdots\left(1+\frac{1}{a_{n}}\right) \cdot \frac{1}{a_{n+1}} . \tag{1}
\end{equation*}
$$

Hence, to complete the solution it is sufficient to prove (1).
To prove (1), apply a second induction. For $n=0$, we have to verify

$$
\frac{1}{a_{0}} \cdot \frac{1}{a_{1}-a_{0}} \leq\left(1+\frac{1}{a_{0}}\right) \frac{1}{a_{1}}
$$

Multiplying by $a_{0} a_{1}\left(a_{1}-a_{0}\right)$, this is equivalent with

$$
a_{1} \leq\left(a_{0}+1\right)\left(a_{1}-a_{0}\right) \Leftrightarrow a_{0} \leq a_{0} a_{1}-a_{0}^{2} \Leftrightarrow 1 \leq a_{1}-a_{0}
$$

For the induction step it is sufficient that

$$
\left(1+\frac{1}{a_{n+1}-a_{0}}\right) \cdot \frac{a_{n+1}-a_{0}}{a_{n+2}-a_{0}} \leq\left(1+\frac{1}{a_{n+1}}\right) \cdot \frac{a_{n+1}}{a_{n+2}} .
$$

Multiplying by $\left(a_{n+2}-a_{0}\right) a_{n+2}$,

$$
\begin{aligned}
& \left(a_{n+1}-a_{0}+1\right) a_{n+2} \leq\left(a_{n+1}+1\right)\left(a_{n+2}-a_{0}\right) \\
& \Leftrightarrow a_{0} \leq a_{0} a_{n+2}-a_{0} a_{n+1} \Leftrightarrow 1 \leq a_{n+2}-a_{n+1} .
\end{aligned}
$$

Note that (from the solution) the equality holds if and only if $a_{k+1}-a_{k}=1$ for all k.
Remark. The statement of the problem is a direct corollary of the identity

$$
1+\sum_{i=0}^{n}\left(\frac{1}{a_{i}} \prod_{j \neq i}\left(1+\frac{1}{a_{j}-a_{i}}\right)\right)=\prod_{i=0}^{n}\left(1+\frac{1}{a_{i}}\right) .
$$

Problem 8 (10 points). Denote by S_{n} the group of permutations of the sequence $(1,2, \ldots, n)$. Suppose that G is a subgroup of S_{n}, such that for every $\pi \in G \backslash\{e\}$ there exists a unique $k \in\{1,2, \ldots, n\}$ for which $\pi(k)=k$. (Here e is the unit element in the group S_{n}.) Show that this k is the same for all $\pi \in G \backslash\{e\}$.
Solution. Let us consider the action of G on the set $X=\{1,2, \ldots, n\}$. Let

$$
G_{x}=\{g \in G: g(x)=x\} \text { and } G x=\{g(x): g \in G\}
$$

be the stabilizer and the orbit of $x \in X$ under this action, respectively. The condition of the problem state that

$$
\begin{equation*}
G=\bigcup_{x \in X} G_{x} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{x} \cap G_{y}=\{e\} \text { for all } x \neq y \tag{2}
\end{equation*}
$$

We need to prove that $G_{x}=G$ for some $x \in X$.
Let $G x_{1}, G x_{2}, \ldots, G x_{k}$ be the distinct orbits of the action of G. Then one can write (1) as

$$
\begin{equation*}
G=\bigcup_{i=1}^{k} \bigcup_{y \in G x_{i}} G_{y} . \tag{3}
\end{equation*}
$$

It is well known that

$$
\begin{equation*}
|G x|=\frac{|G|}{\left|G_{x}\right|} \tag{4}
\end{equation*}
$$

Also note that if $y \in G x$ then $G y=G x$ and thus $|G y|=|G x|$. Therefore,

$$
\begin{equation*}
\left|G_{x}\right|=\frac{|G|}{|G x|}=\frac{|G|}{|G y|}=\left|G_{y}\right| \text { for all } y \in G x \tag{5}
\end{equation*}
$$

Combining (3),(2), (4) and (5) we gwt

$$
|G|-1=|G \backslash\{e\}|=\left|\bigcup_{i=1}^{k} \bigcup_{y \in G x_{i}} G_{y} \backslash\{e\}\right|=\sum_{i=1}^{k} \frac{|G|}{\left|G_{x_{i}}\right|}\left(\left|G_{x_{i}}\right|-1\right),
$$

hence

$$
\begin{equation*}
1-\frac{1}{|G|}=\sum_{i=1}^{k}\left(1-\frac{1}{\left|G_{x_{i}}\right|}\right) \tag{6}
\end{equation*}
$$

If for some $i, j \in\{1,2, \ldots, k\}$ we have $\left|G_{x_{i}}\right|,\left|G_{x_{j}}\right| \geq 2$ then

$$
\sum_{i=1}^{k}\left(1-\frac{1}{\left|G_{x_{i}}\right|}\right) \geq\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{2}\right)=1>1-\frac{1}{|G|}
$$

which contradics with (6), thus we can assume that

$$
\left|G_{x_{1}}\right|=\left|G_{x_{2}}\right|=\cdots=\left|G_{x_{k-1}}\right|=1
$$

Then from (6) we get $\left|G_{x_{k}}\right|=|G|$, hence $G_{x_{k}}=G$.
Problem 9 (10 points). Let A be symmetric $m \times m$ matrix over the two-element field all of whose diagonal entries are zero. Prove that for every positive integer n each column of matrix A^{n} has a zero entry.
Solution. Denote by $e_{k}(1 \leq k \leq m)$ the m-dimensional vector over F_{2}, whose k-th entry is 1 and all the other elements are 0 . Furthermore, let u be the vector whose all entries are 1 . The k-th column of A^{n} is $A^{n} e_{k}$. So the statement can be written as $A^{n} e_{k} \neq u$ for all $1 \leq k \leq m$ and all $n \geq 1$.

For every pair of vectors $x=\left(x_{1}, \ldots, x_{m}\right)$ and $y=\left(y_{1}, \ldots, y_{m}\right)$, define the bilinear form $(x, y)=x^{T} y=x_{1} y_{1}+\cdots+x_{m} y_{m}$. The product (x, y) has all basic properties of scalar product (except the property that $(x, x)=0$ implies $x=0$). Moreover, we have $(x, x)=(x, u)$ for every vector $x \in F_{2}^{m}$.

It is also easy to check that $(w, A w)=w^{T} A w=0$ for all vectors w, since A is symmetric and its diagonal elements are 0 .

Lemma. Suppose that $v \in F_{2}^{m}$ is a vector such that $A^{m} v=u$ for some $n \geq 1$. Then $(v, v)=0$.
Proof. Apply induction by n. For odd values of n we prove the lemma directly. Let $n=2 k+1$ and $w=A^{k} v$, then

$$
(v, v)=(v, u)=\left(v, A^{n} v\right)=v^{T} A^{n} v=v^{T} A^{2 k+1} v=\left(A^{k} v, A^{k+1} v\right)=(w, A w)=0
$$

Now suppose that n is even, $n=2 k$, and the lemma is true for all smaller values of n. Let $w=A^{k} v$, then $A^{k} w=A^{n} v=u$ and thus we have $(w, w)=0$ by the induction hypothesis. Hence,

$$
(v, v)=(v, u)=\left(v, A^{n} v\right)=v^{T} A^{2 k} v=\left(A^{k} v\right)^{T}\left(A^{k} v\right)=\left(A^{k} v, A^{k} v\right)=(w, w)=0
$$

The lemma is proved.
Now suppose that $A^{n} e_{k}=u$ for some $1 \leq k \leq m$ and positive n. By the lemma, we should have $\left(e_{k}, e_{k}\right)=0$. But this is imposible because $\left(e_{k}, e_{k}\right)=1 \neq 0$.
Problem 10 (10 points). Suppose that for a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and real numbers $a<b$ one has $f(x)=0$ for all $x \in(a, b)$. Prove that $f(x)=0$ for all $x \in \mathbb{R}$ if

$$
\sum_{k=0}^{p-1} f\left(y+\frac{k}{p}\right)=0
$$

for every prime number p and every real number y.
Solution. Let $N>1$ be some integer to be defined later, and consider set of all real polynomials

$$
\mathcal{J}_{N}=\left\{c_{0}+c_{1} x+\cdots+c_{n} x^{n} \in \mathbb{R}[x] \left\lvert\, \forall x \in \mathbb{R} \sum_{k=0}^{n} c_{k} f\left(x+\frac{k}{N}\right)=0\right.\right\} .
$$

Notice that $0 \in \mathcal{J}_{N}$, any linear combinations of any elements in \mathcal{J}_{N} is in \mathcal{J}_{N}, and for every $P(x) \in \mathcal{J}_{N}$ we have $x P(x) \in \mathcal{J}_{N}$. Hence, \mathcal{J}_{N} is an ideal of the ring $\mathbb{R}[x]$.

By the problem's conditions, for every prime divisors of N we have $\frac{x^{N}-1}{x^{N / p}-1} \in \mathcal{J}_{N}$. Since $\mathbb{R}[x]$ is a principle ideal domain (due to the Euclidean algorithm), the greatest common divisor is the intersection of such sets: it can be seen that the intersection consist of the primitive N th roots of unity. Therefore,

$$
\operatorname{gcd}\left\{\frac{x^{N}-1}{x^{N / p}-1}|p| N\right\}=\Phi_{N}(x)
$$

is the N th cyclotomic polynomial. So $\Phi_{N} \in \mathcal{J}_{N}$, which polynomial has degree $\varphi(N)$.
Now we choose N in such a way that $\frac{\varphi(N)}{N}<b-a$. It is well known that $\lim _{N \rightarrow \infty} \inf \frac{\varphi(N)}{N}=$ 0 , so there exists such a value for N. Let $\Phi_{N}(x)=a_{0}+a_{1} x+\cdots+a_{\varphi(N)} x^{\varphi(N)}$ where $a_{\varphi}=1$ and $\left|a_{0}\right|=1$.

Then, by the definition of \mathcal{J}_{N}, we have

$$
\sum_{k=0}^{\varphi(N)} a_{k} f\left(x-\frac{\varphi(N)-k}{N}\right)=0 \text { for all } x \in \mathbb{R}
$$

If $x \in\left[b, b+\frac{1}{N}\right)$, then

$$
f(x)=-\sum_{k=0}^{\varphi(N)} a_{k} f\left(x-\frac{\varphi(N)-k}{N}\right)
$$

On the right-hand side, all numbers $x-\frac{\varphi(N)-k}{N}$ lie in (a, b). Therefore the right-hand side is zero and $f(x)=0$ for all $x \in\left[b, b+\frac{1}{N}\right)$. It can be obtained similarly that $f(x)=0$ for all $x \in\left(a-\frac{1}{N}, a\right]$ as well. Hence, $f=0$ in the interval $\left(a-\frac{1}{N}, b+\frac{1}{N}\right)$. Continuing in this fashion we see that f must vanish everywhere.

