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Problem 1 (10 points). Let 0 < a < b. Prove that∫ b

a

(x2 + 1)e−x
2

dx ≥ e−a
2 − e−b2 .

Solution 1. Let f(x) =
x∫
a

(t2 + 1)e−t
2
dt and let g(x) = −e−x2

; both functions are

increasing. By Cauchy’s Mean Value Theorem, there exists a real number x0 ∈ (a, b) such
that

f(b)− f(a)

g(b)− g(a)
=
f ′(x0)

g′(x0)
=

(x2
0 + 1)e−x

2
0

2x0e−x
2
0

=
1

2

(
x0 +

1

x0

)
≥ 1.

Then ∫ b

a

(x2 + 1)e−x
2

dx = f(b)− f(a) ≥ g(b)− g(a) = e−a
2 − e−b2 .

Solution 2. The inequality x1 + 1 ≥ 2x follows∫ b

a

(x2 + 1)e−x
2

dx ≥
∫ b

a

2xe−x
2

dx = −e−x2
∣∣∣b
a

= e−a
2 − e−b2 .

Problem 2 (10 points). Compute the sum of the series

∞∑
k=0

1

(4k + 1)(4k + 2)(4k + 3)(4k + 4)
=

1

1 · 2 · 3 · 4
+

1

5 · 6 · 7 · 8
+ · · ·

Solution 1. Let
∞∑
k=0

x4k+4

(4k + 1)(4k + 2)(4k + 3)(4k + 4)
.

The power series converges for |x| ≤ 1 and our goal is to compute F (1).
Differentiating 4 times, we get

F (4)(x) =
∞∑
k=0

x4k =
1

1− x4
.

Since F (0) = F ′(0) = F ′′(0) = F”(0) = 0 anf F is continous at 1− 0 by Abel’s continuity
theorem, integrating 4 times we get

F ′′′(y) = F ′′′(0) +

∫ y

0

F (4)(x)dx =

∫ y

0

dx

1− x4
=

1

2
arctan y +

1

4
log(1 + y)− 1

4
log(1− y),

F ′′(z) = F ′′(0) +

∫ z

0

F (3)(y)dy =

∫ z

0

(1

2
arctan y +

1

4
log(1 + y)− 1

4
log(1− y)

)
dy =

1

2

(
z arctan z−

∫ z

0

ydy

1 + y2

)
+

1

4

(
(1+z) log(1+z)−

∫ z

0

dy
)

+
1

4

(
(1−z) log(1−z)+

∫ z

0

dy
)



=
1

2
z arctan z − 1

4
log(1 + z2) +

1

4
(1 + z) log(1 + z) +

1

4
(1− z) log(1− z),

F ′(t) =

∫ t

0

(1

2
z arctan z − 1

4
log(1 + z2) +

1

4
(1 + z) log(1 + z) +

1

4
(1− z) log(1− z)

)
dz =

=
1

4

(
(1 + t2) arctan t− t

)
− 1

4

(
t log(1 + t2)− 2t+ 2 arctan t

)
+

+
1

8

(
(1 + t2) log(1 + t)− t− 1

2
t2
)
− 1

8

(
(1− t2) log(1− t) + t− 1

2
t2
)

=

=
1

4
(−1 + t2) arctan t− 1

4
t log(1 + t2) +

1

8
(1 + t2) log(1 + t)− 1

8
(1− t2) log(1− t),

F (1) =

∫ 1

0

F ′(t)dt =

=

∫ 1

0

(1

4
(−1 + t2) arctan t− 1

4
t log(1 + t2) +

1

8
(1 + t2) log(1 + t)− 1

8
(1− t2) log(1− t)

)
dt

=
[−3t+ t3

12
arctan t+

1− 3t2

24
log(1 + t2) +

(1 + t)3

24
log(1− t)

]1
0

=
ln 2

4
− π

24
.

Remark. The computation can be shorter if we change the order of integrations

F (1) =

∫ 1

t=0

∫ t

z=0

∫ z

y=0

∫ y

x=0

1

1− x4
dxdydzdt =

∫ 1

x=0

1

1− x4

∫ 1

y=x

∫ 1

z=y

∫ 1

t=z

dtdzdydx

=

∫ 1

x=0

1

1− x4

(1

6

∫ 1

y=x

∫ 1

z=y

∫ 1

t=z

dtdzdy
)

dx =

∫ 1

0

1

1− x4
· (1− x)3

6
dx

=
[
− 1

6
arctanx− 1

12
log(1 + x2) +

1

3
log(1 + x)

]1
0

=
ln 2

4
− π

24
.

Solution 2. Let

Am =
∞∑
k=0

1

(4k + 1)(4k + 2)(4k + 3)(4k + 4)
=

=
∞∑
k=0

(1

6
· 1

4k + 1
− 1

2
· 1

4k + 2
+

1

2
· 1

4k + 3
− 1

6
· 1

4k + 4

)
=

1

3
Cm −

1

6
Bm −

1

6
Dm,

where

Cm =
∞∑
k=0

( 1

4k + 1
− 1

4k + 2
+

1

4k + 3
− 1

4k + 4

)
,

Bm =
∞∑
k=0

( 1

4k + 1
− 1

4k + 3

)
, Dm =

∞∑
k=0

( 1

4k + 2
− 1

4k + 4

)
.

Therefore,

lim
m→∞

Am = lim
m→∞

2Cm −Bm −Dm

6
=

2 ln 2− π
4
− 1

2
ln 2

6
=

ln 2

4
− π

24
.
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Problem 3 (10 points). Define the sequence x1, x2, . . . , inductively by x1 =
√

5 and
xn+1 = x2

n − 2 for each n ≥ 1. Compute

lim
n→∞

x1x2 · · ·xn
xn+1

·

Solution. Let yn = n2. Then yn+1 = (yn − 2)2 and yn+1 − 4 = yn(yn − 4). Since
y2 = 9 > 5, we have y3 = (y2− 2)2 > 5 and inductively yn > 5, n ≥ 2. Hence, yn+1− yn =
y2
n − 5yn + 4 > 4 for all n ≥ 2, so yn →∞.

By yn+1 − 4 = yn(yn − 4), we find(x1x2 · · ·xn
xn+1

)2

=
y1y2 · · · yn
yn+1

=
yn+1 − 4

yn+1

· y1y2 · · · yn
yn+1 − 4

=
yn+1 − 4

yn+1

· y1y2 · · · yn−1

yn − 4
= · · ·

=
yn+1 − 4

yn+1

· 1

y1 − 4
=
yn+1 − 4

yn+1

→ 1.

Therefore,

lim
n→∞

x1x2 · · ·xn
xn+1

= 1.

Problem 4 (10 points). Let a, b be two integers and suppose that n is a positive integer
for which the set

Z \ {axn + byn
∣∣∣ x, y ∈ Z}

is finite. Prove that n = 1. Prove that n = 1.
Solution. Asumme that n > 1. Notice that n may be replaced by any prime divisor p
of n. Moreover, a and b shoutd be coprime, otherwise the numbers not divisible by the
greatest common divisor of a, b can not be represented as axn + byn.

If n = 2, then the number of form axn + byn takes not all possible remanders modulo
8. If, say, b is even, then ax2 takes at most three different remanders modulo 8. by2 takes
at most two, hence axn + byn takes at most 3× 3 = 6 different remanders. If both a and
b are odd, then axn + byn ≡ x2 ± y2( mod 4) : the expression x2 + y2 does not take the
remanders 3 modulo 4 and x2 − y2 does take the remander 2 modulo 4.

Consider the case when p ≥ 3. The pth powers take exactly p different remanders
modulo p2. Indeed, (x+kp)p and xp have the same remander modulo p2, and all numbers
0p, 1p, . . . , (p − 1)p are different even modulo p. So, axp + byp take at most p2 different
remanders modulo p2. If it takes strictly less then p2 different remanders modulo p2, we get
infinitely many non-reprentable numbers. If it takes exactly p2 remanders, then axp + byp

is divisible by p2, it is also divisible by pp. Again we get infinitely many non-reprentable
numbers, for example the numbers congruent to p2 are non-reprentable numbers.

Problem 5 (10 points). Suppose that a, b, c are real numbers in the interval [−1, 1] such
that

1 + 2abc ≥ a2 + b2 + c2.

Prove that
1 + 2(abc)n ≥ a2n + b2n + c2n

for all positive integers n.
Solution. The constraint can be written as

(a− bc)2 ≤ (1− b2)(1− c2). (1)
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By the Cauchy-Schwarz inequality,

(an−1 + an−2bc+ · · · bn−1cn−1)2 ≤ (|a|n−1 + |a|n−2|bc|+ |bc|n−1)

≤ (1 + |bc|+ · · ·+ |bc|n−1)2 ≤ (1 + |b|2 + · · ·+ |b|2(n−1)) · (1 + |c|2 + · · ·+ |c|2(n−1)).

Multilying by (1), we get

(a− bc)2(an−1 + an−2bc+ · · · bn−1cn−1)2 ≤

(1− b2)(1 + |b|2 + · · ·+ |b|2(n−1)) · (1− c2)(1 + |c|2 + · · ·+ |c|2(n−1))

⇔ (an − bncn)2 ≤ (1− b2n)(1− c2n)⇔ 1 + 2(abc)n ≥ a2n + b2n + c2n.
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Problem 6 (10 points). (a) A sequence x1, x2, . . . of real numbers satisfies

xn+1 = xn cosxn for all n ≥ 1.

Does it follow that this sequence converges for all initial value x1?
(b) A sequence y1, y2, . . . of real numbers satisfies

yn+1 = yn sinxn for all n ≥ 1.

Does it follow that this sequence converges for all initial value y1?
Solution.

(a) NO. For example, for x1 = π we have xn = (−1)nπ, and the sequence is divergent.
(b) YES. Notice that |yn| is nonincreasing and hence converges to some number a ≥ 0.
If a = 0, then lim yn = 0 and we are done.
If a > 0, then a = lim |yn+1| = lim |yn sin yn| = a| sin a|, so sin a = ±1 and a =(

k +
1

2

)
π for some nonnegative integer k.

Since the sequence |yn| is nonincreasing, there exists an index n0 such that(
k +

1

2

)
π ≤ |yn| < (k + 1)π for all n > n0.

Then all the numbers yn0+1, yn0+2, . . . lie in the union of the intervals
[(
k+

1

2

)
π, (k+1)π

)
and

(
− (k + 1)π,−

(
k +

1

2

)
π
]

Depending on the parity of k, in one of the intervals
[(
k +

1

2

)
π, (k + 1)π

)
and

(
−

(k + 1)π,−
(
k +

1

2

)
π
]

the values of the sine function is positive, denote this interval by

I+. In the other interval the sin function is negative, denote this interval by I−. If yn ∈ I−
for some n > n0 then yn and yn+1 = yn sin yn have opposite signs, so yn+1 ∈ I+. On the
other hand, if yn ∈ I+ for some n > n0 then yn and yn+1 = yn sin yn have the same sign,
so yn+1 ∈ I+. In both cases, yn+1 ∈ I+.

We obtained that the numbers yn0+2, yn0+3, . . . lie in I+, so they have the same sign.
Since |yn| is convergent, this implies that the sequence {yn} is convergent as well.
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Problem 7 (10 points). Let a0, a1, . . . , an be positive real numbers such that an+1−an ≥
1 for all k = 0, 1, . . . , n− 1. Prove that

1 +
1

a0

(
1 +

1

a1 − a0

)
· · ·
(

1 +
1

an − a0

)
≤
(

1 +
1

a0

)(
1 +

1

a1

)
· · ·
(

1 +
1

an

)
.

Solution. Apply induction on n. Considering the empty product as 1, we have equality
for n = 0.

Now assume that the statement is true for some n and prove it for n + 1. For n + 1,
the staterment can be written as the sum of the inequalities

1 +
1

a0

(
1 +

1

a1 − a0

)
· · ·
(

1 +
1

an − a0

)
≤
(

1 +
1

a0

)(
1 +

1

a1

)
· · ·
(

1 +
1

an

)
(which is the induction hypothesis) and

1

a0

(
1+

1

a1 − a0

)
· · ·
(

1+
1

an − a0

)
· 1

an+1 − a0

≤
(

1+
1

a0

)(
1+

1

a1

)
· · ·
(

1+
1

an

)
· 1

an+1

. (1)

Hence, to complete the solution it is sufficient to prove (1).
To prove (1), apply a second induction. For n = 0, we have to verify

1

a0

· 1

a1 − a0

≤
(

1 +
1

a0

) 1

a1

·

Multiplying by a0a1(a1 − a0), this is equivalent with

a1 ≤ (a0 + 1)(a1 − a0)⇔ a0 ≤ a0a1 − a2
0 ⇔ 1 ≤ a1 − a0.

For the induction step it is sufficient that(
1 +

1

an+1 − a0

)
· an+1 − a0

an+2 − a0

≤
(

1 +
1

an+1

)
· an+1

an+2

·

Multiplying by (an+2 − a0)an+2,

(an+1 − a0 + 1)an+2 ≤ (an+1 + 1)(an+2 − a0)

⇔ a0 ≤ a0an+2 − a0an+1 ⇔ 1 ≤ an+2 − an+1.

Note that (from the solution) the equality holds if and only if ak+1− ak = 1 for all k.

Remark. The statement of the problem is a direct corollary of the identity

1 +
n∑
i=0

( 1

ai

∏
j 6=i

(
1 +

1

aj − ai
))

=
n∏
i=0

(
1 +

1

ai

)
.

Problem 8 (10 points). Denote by Sn the group of permutations of the sequence
(1, 2, . . . , n). Suppose that G is a subgroup of Sn, such that for every π ∈ G \ {e} there
exists a unique k ∈ {1, 2, . . . , n} for which π(k) = k. (Here e is the unit element in the
group Sn.) Show that this k is the same for all π ∈ G \ {e}.
Solution. Let us consider the action of G on the set X = {1, 2, . . . , n}. Let

Gx = {g ∈ G : g(x) = x} and Gx = {g(x) : g ∈ G}
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be the stabilizer and the orbit of x ∈ X under this action, respectively. The condition of
the problem state that

G =
⋃
x∈X

Gx (1)

and
Gx ∩Gy = {e} for all x 6= y. (2)

We need to prove that Gx = G for some x ∈ X.
Let Gx1, Gx2, . . . , Gxk be the distinct orbits of the action of G. Then one can write

(1) as

G =
k⋃
i=1

⋃
y∈Gxi

Gy. (3)

It is well known that

|Gx| = |G|
|Gx|

. (4)

Also note that if y ∈ Gx then Gy = Gx and thus |Gy| = |Gx|. Therefore,

|Gx| =
|G|
|Gx|

=
|G|
|Gy|

= |Gy| for all y ∈ Gx. (5)

Combining (3),(2), (4) and (5) we gwt

|G| − 1 = |G \ {e}| =
∣∣∣ k⋃
i=1

⋃
y∈Gxi

Gy \ {e}
∣∣∣ =

k∑
i=1

|G|
|Gxi
|
(|Gxi

| − 1),

hence

1− 1

|G|
=

k∑
i=1

(
1− 1

|Gxi
|

)
. (6)

If for some i, j ∈ {1, 2, . . . , k} we have |Gxi
|, |Gxj

| ≥ 2 then

k∑
i=1

(
1− 1

|Gxi
|

)
≥
(

1− 1

2

)
+
(

1− 1

2

)
= 1 > 1− 1

|G|
,

which contradics with (6), thus we can assume that

|Gx1| = |Gx2| = · · · = |Gxk−1
| = 1.

Then from (6) we get |Gxk
| = |G|, henceGxk

= G.

Problem 9 (10 points). Let A be symmetric m×m matrix over the two-element field
all of whose diagonal entries are zero. Prove that for every positive integer n each column
of matrix An has a zero entry.
Solution. Denote by ek (1 ≤ k ≤ m) the m-dimensional vector over F2, whose k-th
entry is 1 and all the other elements are 0. Furthermore, let u be the vector whose all
entries are 1. The k-th column of An is Anek. So the statement can be written as Anek 6= u
for all 1 ≤ k ≤ m and all n ≥ 1.

For every pair of vectors x = (x1, . . . , xm) and y = (y1, . . . , ym), define the bilinear
form (x, y) = xTy = x1y1 + · · · + xmym. The product (x, y) has all basic properties of
scalar product (except the property that (x, x) = 0 implies x = 0). Moreover, we have
(x, x) = (x, u) for every vector x ∈ Fm

2 .
It is also easy to check that (w,Aw) = wTAw = 0 for all vectors w, since A is

symmetric and its diagonal elements are 0.
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Lemma. Suppose that v ∈ Fm
2 is a vector such that Amv = u for some n ≥ 1. Then

(v, v) = 0.

Proof. Apply induction by n. For odd values of n we prove the lemma directly. Let
n = 2k + 1 and w = Akv, then

(v, v) = (v, u) = (v, Anv) = vTAnv = vTA2k+1v = (Akv, Ak+1v) = (w,Aw) = 0.

Now suppose that n is even, n = 2k, and the lemma is true for all smaller values of
n. Let w = Akv, then Akw = Anv = u and thus we have (w,w) = 0 by the induction
hypothesis. Hence,

(v, v) = (v, u) = (v,Anv) = vTA2kv = (Akv)T (Akv) = (Akv, Akv) = (w,w) = 0.

The lemma is proved.
Now suppose that Anek = u for some 1 ≤ k ≤ m and positive n. By the lemma, we

should have (ek, ek) = 0. But this is imposible because (ek, ek) = 1 6= 0.

Problem 10 (10 points). Suppose that for a function f : R → R and real numbers
a < b one has f(x) = 0 for all x ∈ (a, b). Prove that f(x) = 0 for all x ∈ R if

p−1∑
k=0

f
(
y +

k

p

)
= 0

for every prime number p and every real number y.
Solution. Let N > 1 be some integer to be defined later, and consider set of all real
polynomials

JN =
{
c0 + c1x+ · · ·+ cnx

n ∈ R[x]
∣∣∣ ∀x ∈ R

n∑
k=0

ckf
(
x+

k

N

)
= 0
}
.

Notice that 0 ∈ JN , any linear combinations of any elements in JN is in JN , and for
every P (x) ∈ JN we have xP (x) ∈ JN . Hence, JN is an ideal of the ring R[x].

By the problem’s conditions, for every prime divisors of N we have
xN − 1

xN/p − 1
∈ JN .

Since R[x] is a principle ideal domain (due to the Euclidean algorithm), the greatest
common divisor is the intersection of such sets: it can be seen that the intersection
consist of the primitive Nth roots of unity. Therefore,

gcd
{ xN − 1

xN/p − 1
| p|N

}
= ΦN(x)

is the Nth cyclotomic polynomial. So ΦN ∈ JN , which polynomial has degree ϕ(N).

Now we chooseN in such a way that
ϕ(N)

N
< b−a. It is well known that lim

N→∞
inf

ϕ(N)

N
=

0, so there exists such a value for N. Let ΦN(x) = a0 +a1x+ · · ·+aϕ(N)x
ϕ(N) where aϕ = 1

and |a0| = 1.
Then, by the definition of JN , we have

ϕ(N)∑
k=0

akf
(
x− ϕ(N)− k

N

)
= 0 for all x ∈ R.

If x ∈
[
b, b+

1

N

)
, then

f(x) = −
ϕ(N)∑
k=0

akf
(
x− ϕ(N)− k

N

)
.
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On the right-hand side, all numbers x− ϕ(N)− k
N

lie in (a, b). Therefore the right-hand

side is zero and f(x) = 0 for all x ∈
[
b, b+

1

N

)
. It can be obtained similarly that f(x) = 0

for all x ∈
(
a− 1

N
, a
]

as well. Hence, f = 0 in the interval
(
a− 1

N
, b+

1

N

)
. Continuing

in this fashion we see that f must vanish everywhere.

—————————————————————-
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