International Mathematics Competition for University Students

July 25-30 2009, Budapest, Hungary

Day 1

Problem 1. Suppose that f and g are real-valued functions on the real line and $f(r) \leq g(r)$ for every rational r. Does this imply that $f(x) \leq g(x)$ for every real x if
a) f and g are non-decreasing?
b) f and g are continuous?

Problem 2. Let A, B and C be real square matrices of the same size, and suppose that A is invertible. Prove that if $(A-B) C=B A^{-1}$, then $C(A-B)=A^{-1} B$.

Problem 3. In a town every two residents who are not friends have at least a friend in common, and no one is a fiend, of everyone else. Let us number the residents from 1 to n and let a_{i} be the number of friends of the i-th resident. Suppose that $\sum_{i=1}^{n} a_{i}^{2}=n^{2}-n$. Let k be the smallest number of residents (at least three) who can be seated at a round table in such a way that any two neighbors are friends. Determine all possible values of k.

Problem 4. Let $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$ be a complex polynomial. Suppose that $1=c_{0} \geq c_{1} \geq \cdots c_{n} \geq 0$ is a sequence of real numbers which is convex (i.e. $2 c_{k} \leq c_{k-1}+c_{k+1}$ for every $k=$
$1,2, \ldots, n-1$), and consider the polynomials

$$
q(z)=c_{0} a_{0}+c_{1} a_{1} z+c_{2} a_{2} z^{2}+\cdots+c_{n} a_{n} z^{n} .
$$

Prove that

$$
\max _{|z| \leq 1}|q(z)| \leq \max _{|z| \leq 1}|p(z)| .
$$

Problem 5. Let n be a positive integer. An n-simplex in \mathbb{R}^{n} is given by $n+1$ points $P_{0}, P_{1}, \ldots, P_{n}$, called its vertices, which do not all belong to the same hyperplane. For every n-simplex S we denote by $v(S)$ the volume of S, and we write $C(S)$ for the center of the unique sphere containing all the vertices of S.

Suppose that P is a point inside an n-simplex S. Let S_{i} be the n simplex obtained from S by replacing its i-th vertex by P. Prove that

$$
v\left(S_{0}\right) C\left(S_{0}\right)+v\left(S_{1}\right) C\left(S_{1}\right)+\cdots+v\left(S_{n}\right) C\left(S_{n}\right)=v(S) C(S) .
$$

Day 2

Problem 1. Let l be a line and P a point in \mathbb{R}^{3}. Let S be the set of points X such that the distance from X to l is greater or equal to two times the distance between X and P. If the distance from P to l is $d>0$, evaluate the volume of S.

Problem 2. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a two times differentiable function satisfying $f(0)=1, f^{\prime}(0)=0$, and for all $x \in[0, \infty)$

$$
f^{\prime \prime}(x)-5 f^{\prime}(x)+6 f(x) \geq 0 .
$$

Prove that for all $x \in[0, \infty)$

$$
f(x) \geq 3 e^{2 x}-2 e^{3 x} .
$$

Problem 3. Let A and B be two complex square matrices such that

$$
A^{2} B+B A^{2}=2 A B A .
$$

Prove that there exists a positive integer k such that $(A B-B A)^{k}=0$.

Problem 4. Let p be a prime number and \mathbb{F}_{p} be the field of residues modulo p. Let W be the smallest set of polynomials with coefficients in \mathbb{F}_{p} such that

- the polynomial $x+1$ and $x^{p-2}+x^{p-3}+\cdots+x^{2}+2 x+1$ are in W, and
- for any polynomials $h_{1}(x)$ and $h_{2}(x)$ in W the polynomial $r(x)$, which is the remainder of $h_{1}\left(h_{2}(x)\right)$ modulo $x^{p}-x$, is also in W.

How many polynomials are there in W ?
Problem 5. Let \mathbb{M} be the vector space of $m \times p$ real matrices. For a vector subspace $S \subset \mathbb{M}$, denote by $\delta(S)$ the dimension of the vector space generated by all columns of all matrices in S.

Say that a vector subspace $T \subset \mathbb{M}$ is a convering matrix space if

$$
\cup_{A \in T, A \neq 0} \operatorname{ker} A=\mathbb{R}^{p} .
$$

Such a T is minimal if it does not contain a proper vector subspace $S \subset T$ which is also a convering matrix space.
(a)(8 points) Let T be a minimal convering matrix space and let $n=\operatorname{dim} T$. Prove that

$$
\delta(T) \leq\binom{ n}{2}
$$

(b)(2 points) Prove that for every positive integer n we can find m and p, and a minimal convering matrix space T as above such that $\operatorname{dim} T=n$ and $\delta(T)=\binom{n}{2}$.

